BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38658732)

  • 21. Multiplex precise base editing in cynomolgus monkeys.
    Zhang W; Aida T; Del Rosario RCH; Wilde JJ; Ding C; Zhang X; Baloch Z; Huang Y; Tang Y; Li D; Lu H; Zhou Y; Jiang M; Xu D; Fang Z; Zheng Z; Huang Q; Feng G; Yang S
    Nat Commun; 2020 May; 11(1):2325. PubMed ID: 32393762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High performance TadA-8e derived cytosine and dual base editors with undetectable off-target effects in plants.
    Fan T; Cheng Y; Wu Y; Liu S; Tang X; He Y; Liao S; Zheng X; Zhang T; Qi Y; Zhang Y
    Nat Commun; 2024 Jun; 15(1):5103. PubMed ID: 38877035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting fidelity of adenine and cytosine base editors in mouse embryos.
    Lee HK; Willi M; Miller SM; Kim S; Liu C; Liu DR; Hennighausen L
    Nat Commun; 2018 Nov; 9(1):4804. PubMed ID: 30442934
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors.
    Chen F; Lian M; Ma B; Gou S; Luo X; Yang K; Shi H; Xie J; Ge W; Ouyang Z; Lai C; Li N; Zhang Q; Jin Q; Liang Y; Chen T; Wang J; Zhao X; Li L; Yu M; Ye Y; Wang K; Wu H; Lai L
    Commun Biol; 2022 Nov; 5(1):1163. PubMed ID: 36323848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Precise in vivo functional analysis of DNA variants with base editing using ACEofBASEs target prediction.
    Cornean A; Gierten J; Welz B; Mateo JL; Thumberger T; Wittbrodt J
    Elife; 2022 Apr; 11():. PubMed ID: 35373735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effective generation of maternal genome point mutated porcine embryos by injection of cytosine base editor into germinal vesicle oocytes.
    Su X; Chen W; Cai Q; Liang P; Chen Y; Cong P; Huang J
    Sci China Life Sci; 2020 Jul; 63(7):996-1005. PubMed ID: 31974864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A/C Simultaneous Conversion Using the Dual Base Editor in Human Cells.
    Zhang X; Guan Y; Li D
    Methods Mol Biol; 2023; 2606():63-72. PubMed ID: 36592308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR single base-editing: in silico predictions to variant clonal cell lines.
    Dickson KA; Field N; Blackman T; Ma Y; Xie T; Kurangil E; Idrees S; Rathnayake SNH; Mahbub RM; Faiz A; Marsh DJ
    Hum Mol Genet; 2023 Aug; 32(17):2704-2716. PubMed ID: 37369005
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of C-to-G base editors with sequence context preference predictable by machine learning methods.
    Yuan T; Yan N; Fei T; Zheng J; Meng J; Li N; Liu J; Zhang H; Xie L; Ying W; Li D; Shi L; Sun Y; Li Y; Li Y; Sun Y; Zuo E
    Nat Commun; 2021 Aug; 12(1):4902. PubMed ID: 34385461
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Generation and Correction of Mutations in Human iPS Cells Utilizing mRNAs of CRISPR Base Editors and Prime Editors.
    Sürün D; Schneider A; Mircetic J; Neumann K; Lansing F; Paszkowski-Rogacz M; Hänchen V; Lee-Kirsch MA; Buchholz F
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32384610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual guide RNA-mediated concurrent C&G-to-T&A and A&T-to-G&C conversions using CRISPR base editors.
    Zhao Y; Li M; Liu J; Xue X; Zhong J; Lin J; Ye B; Chen J; Qiao Y
    Comput Struct Biotechnol J; 2023; 21():856-868. PubMed ID: 36698964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Precise A•T to G•C base editing in the zebrafish genome.
    Qin W; Lu X; Liu Y; Bai H; Li S; Lin S
    BMC Biol; 2018 Nov; 16(1):139. PubMed ID: 30458760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adenine base editing and prime editing of chemically derived hepatic progenitors rescue genetic liver disease.
    Kim Y; Hong SA; Yu J; Eom J; Jang K; Yoon S; Hong DH; Seo D; Lee SN; Woo JS; Jeong J; Bae S; Choi D
    Cell Stem Cell; 2021 Sep; 28(9):1614-1624.e5. PubMed ID: 33951479
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering a precise adenine base editor with minimal bystander editing.
    Chen L; Zhang S; Xue N; Hong M; Zhang X; Zhang D; Yang J; Bai S; Huang Y; Meng H; Wu H; Luan C; Zhu B; Ru G; Gao H; Zhong L; Liu M; Liu M; Cheng Y; Yi C; Wang L; Zhao Y; Song G; Li D
    Nat Chem Biol; 2023 Jan; 19(1):101-110. PubMed ID: 36229683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. TadA orthologs enable both cytosine and adenine editing of base editors.
    Zhang S; Yuan B; Cao J; Song L; Chen J; Qiu J; Qiu Z; Zhao XM; Chen J; Cheng TL
    Nat Commun; 2023 Jan; 14(1):414. PubMed ID: 36702837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Base Editing in Poplar Through an Agrobacterium-Mediated Transformation Method.
    Li G; Sretenovic S; Coleman G; Qi Y
    Methods Mol Biol; 2023; 2653():53-71. PubMed ID: 36995619
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient Generation of Pathogenic A-to-G Mutations in Human Tripronuclear Embryos via ABE-Mediated Base Editing.
    Li G; Liu X; Huang S; Zeng Y; Yang G; Lu Z; Zhang Y; Ma X; Wang L; Huang X; Liu J
    Mol Ther Nucleic Acids; 2019 Sep; 17():289-296. PubMed ID: 31279230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Editing Properties of Base Editors with SpCas9-NG in Discarded Human Tripronuclear Zygotes.
    Liu X; Zhou X; Li G; Huang S; Sun W; Sun Q; Li L; Huang X; Liu J; Wang L
    CRISPR J; 2021 Oct; 4(5):710-727. PubMed ID: 34661426
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simplified adenine base editors improve adenine base editing efficiency in rice.
    Hua K; Tao X; Liang W; Zhang Z; Gou R; Zhu JK
    Plant Biotechnol J; 2020 Mar; 18(3):770-778. PubMed ID: 31469505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient C-to-G Base Editing with Improved Target Compatibility Using Engineered Deaminase-nCas9 Fusions.
    Chen S; Liu Z; Lai L; Li Z
    CRISPR J; 2022 Jun; 5(3):389-396. PubMed ID: 35238619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.