BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38658732)

  • 41. Glycosylase base editors enable C-to-A and C-to-G base changes.
    Zhao D; Li J; Li S; Xin X; Hu M; Price MA; Rosser SJ; Bi C; Zhang X
    Nat Biotechnol; 2021 Jan; 39(1):35-40. PubMed ID: 32690970
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improving adenine and dual base editors through introduction of TadA-8e and Rad51DBD.
    Xue N; Liu X; Zhang D; Wu Y; Zhong Y; Wang J; Fan W; Jiang H; Zhu B; Ge X; Gonzalez RVL; Chen L; Zhang S; She P; Zhong Z; Sun J; Chen X; Wang L; Gu Z; Zhu P; Liu M; Li D; Zhong TP; Zhang X
    Nat Commun; 2023 Mar; 14(1):1224. PubMed ID: 36869044
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Glycosylase-based base editors for efficient T-to-G and C-to-G editing in mammalian cells.
    Ye L; Zhao D; Li J; Wang Y; Li B; Yang Y; Hou X; Wang H; Wei Z; Liu X; Li Y; Li S; Liu Y; Zhang X; Bi C
    Nat Biotechnol; 2024 Jan; ():. PubMed ID: 38168994
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Diverse nucleotide substitutions in rice base editing mediated by novel TadA variants.
    Yu M; Kuang Y; Wang C; Wu X; Li S; Zhang D; Sun W; Zhou X; Ren B; Zhou H
    Plant Commun; 2024 May; ():100926. PubMed ID: 38725246
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cytosine base editor 4 but not adenine base editor generates off-target mutations in mouse embryos.
    Lee HK; Smith HE; Liu C; Willi M; Hennighausen L
    Commun Biol; 2020 Jan; 3(1):19. PubMed ID: 31925293
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Library-Assisted Evolution in Eukaryotic Cells Yield Adenine Base Editors with Enhanced Editing Specificity.
    Hsiao S; Chen S; Jiang Y; Wang Q; Yang Y; Lai Y; Zhong T; Liao J; Wu Y
    Adv Sci (Weinh); 2024 Jun; ():e2309004. PubMed ID: 38874509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Base Editing: The Ever Expanding Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Tool Kit for Precise Genome Editing in Plants.
    Monsur MB; Shao G; Lv Y; Ahmad S; Wei X; Hu P; Tang S
    Genes (Basel); 2020 Apr; 11(4):. PubMed ID: 32344599
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Engineered domain-inlaid Nme2Cas9 adenine base editors with increased on-target DNA editing and targeting scope.
    Zhao D; Gao X; Zhou J; Li J; Qian Y; Wang D; Niu W; Zhang T; Hu M; Xiong H; Lai L; Li Z
    BMC Biol; 2023 Nov; 21(1):250. PubMed ID: 37946200
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel base editor SpRY-ABE8e
    Li G; Cheng Y; Li Y; Ma H; Pu Z; Li S; Zhao Y; Huang X; Yao Y
    Mol Ther Nucleic Acids; 2023 Mar; 31():78-87. PubMed ID: 36618266
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Prediction of synonymous corrections by the BE-FF computational tool expands the targeting scope of base editing.
    Rabinowitz R; Abadi S; Almog S; Offen D
    Nucleic Acids Res; 2020 Jul; 48(W1):W340-W347. PubMed ID: 32255179
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Recent advances and applications of base editing systems].
    Xu X; Liu M
    Sheng Wu Gong Cheng Xue Bao; 2021 Jul; 37(7):2307-2321. PubMed ID: 34327897
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A precise and efficient adenine base editor.
    Tu T; Song Z; Liu X; Wang S; He X; Xi H; Wang J; Yan T; Chen H; Zhang Z; Lv X; Lv J; Huang XF; Zhao J; Lin CP; Gao C; Zhang J; Gu F
    Mol Ther; 2022 Sep; 30(9):2933-2941. PubMed ID: 35821638
    [TBL] [Abstract][Full Text] [Related]  

  • 53. AcrIIA5 Suppresses Base Editors and Reduces Their Off-Target Effects.
    Liang M; Sui T; Liu Z; Chen M; Liu H; Shan H; Lai L; Li Z
    Cells; 2020 Jul; 9(8):. PubMed ID: 32727031
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Precise genome editing with base editors.
    Liu H; Zhu Y; Li M; Gu Z
    Med Rev (2021); 2023 Feb; 3(1):75-84. PubMed ID: 37724105
    [TBL] [Abstract][Full Text] [Related]  

  • 55. ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems.
    Xie J; Huang X; Wang X; Gou S; Liang Y; Chen F; Li N; Ouyang Z; Zhang Q; Ge W; Jin Q; Shi H; Zhuang Z; Zhao X; Lian M; Wang J; Ye Y; Quan L; Wu H; Wang K; Lai L
    BMC Biol; 2020 Sep; 18(1):131. PubMed ID: 32967664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CRISPR-Cas9 DNA Base-Editing and Prime-Editing.
    Kantor A; McClements ME; MacLaren RE
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32872311
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient in vivo base editing via single adeno-associated viruses with size-optimized genomes encoding compact adenine base editors.
    Davis JR; Wang X; Witte IP; Huang TP; Levy JM; Raguram A; Banskota S; Seidah NG; Musunuru K; Liu DR
    Nat Biomed Eng; 2022 Nov; 6(11):1272-1283. PubMed ID: 35902773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Exploring C-to-G and A-to-Y Base Editing in Rice by Using New Vector Tools.
    Zeng D; Zheng Z; Liu Y; Liu T; Li T; Liu J; Luo Q; Xue Y; Li S; Chai N; Yu S; Xie X; Liu YG; Zhu Q
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887335
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design and Engineering of Light-Induced Base Editors Facilitating Genome Editing with Enhanced Fidelity.
    Sun Y; Chen Q; Cheng Y; Wang X; Deng Z; Zhou F; Sun Y
    Adv Sci (Weinh); 2024 Feb; 11(5):e2305311. PubMed ID: 38039441
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A split and inducible adenine base editor for precise in vivo base editing.
    Zeng H; Yuan Q; Peng F; Ma D; Lingineni A; Chee K; Gilberd P; Osikpa EC; Sun Z; Gao X
    Nat Commun; 2023 Sep; 14(1):5573. PubMed ID: 37696818
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.