BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38658762)

  • 1. Regioselective hydroformylation of propene catalysed by rhodium-zeolite.
    Zhang X; Yan T; Hou H; Yin J; Wan H; Sun X; Zhang Q; Sun F; Wei Y; Dong M; Fan W; Wang J; Sun Y; Zhou X; Wu K; Yang Y; Li Y; Cao Z
    Nature; 2024 May; 629(8012):597-602. PubMed ID: 38658762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodium nanoparticles supported on silanol-rich zeolites beyond the homogeneous Wilkinson's catalyst for hydroformylation of olefins.
    Liu Y; Liu Z; Hui Y; Wang L; Zhang J; Yi X; Chen W; Wang C; Wang H; Qin Y; Song L; Zheng A; Xiao FS
    Nat Commun; 2023 May; 14(1):2531. PubMed ID: 37137908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst.
    Wang L; Zhang W; Wang S; Gao Z; Luo Z; Wang X; Zeng R; Li A; Li H; Wang M; Zheng X; Zhu J; Zhang W; Ma C; Si R; Zeng J
    Nat Commun; 2016 Dec; 7():14036. PubMed ID: 28004661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides.
    Raoufmoghaddam S; Drent E; Bouwman E
    ChemSusChem; 2013 Sep; 6(9):1759-73. PubMed ID: 24009108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethene Hydroformylation Catalyzed by Rhodium Dispersed with Zinc or Cobalt in Silanol Nests of Dealuminated Zeolite Beta.
    Qi L; Das S; Zhang Y; Nozik D; Gates BC; Bell AT
    J Am Chem Soc; 2023 Feb; 145(5):2911-2929. PubMed ID: 36715296
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand Hydrogenation during Hydroformylation Catalysis Detected by In Situ High-Pressure Infra-Red Spectroscopic Analysis of a Rhodium/Phospholene-Phosphite Catalyst.
    Fuentes JA; Janka ME; McKay AP; Cordes DB; Slawin AMZ; Lebl T; Clarke ML
    Molecules; 2024 Feb; 29(4):. PubMed ID: 38398597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Styrene Hydroformylation with In Situ Hydrogen: Regioselectivity Control by Coupling with the Low-Temperature Water-Gas Shift Reaction.
    Li T; Chen F; Lang R; Wang H; Su Y; Qiao B; Wang A; Zhang T
    Angew Chem Int Ed Engl; 2020 May; 59(19):7430-7434. PubMed ID: 32037716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiroketal-based phosphorus ligands for highly regioselective hydroformylation of terminal and internal olefins.
    Jia X; Wang Z; Xia C; Ding K
    Chemistry; 2012 Nov; 18(48):15288-95. PubMed ID: 23135928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultralow-Loading and High-Performing Ionic Liquid-Immobilizing Rhodium Single-Atom Catalysts for Hydroformylation.
    Wei X; Jiang Y; Ma Y; Fang J; Peng Q; Xu W; Liao H; Zhang F; Dai S; Hou Z
    Chemistry; 2022 Sep; 28(53):e202200374. PubMed ID: 35768335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroformylation of 1-hexene in supercritical carbon dioxide: characterization, activity, and regioselectivity studies.
    Marteel AE; Tack TT; Bektesevic S; Davies JA; Mason MR; Abraham MA
    Environ Sci Technol; 2003 Dec; 37(23):5424-31. PubMed ID: 14700329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homogeneous hydroformylation of long chain alkenes catalyzed by water soluble phosphine rhodium complex in CH
    Liu YL; Zhao JG; Zhao YJ; Liu HM; Fu HY; Zheng XL; Yuan ML; Li RX; Chen H
    RSC Adv; 2019 Mar; 9(13):7382-7387. PubMed ID: 35519978
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iridium-phosphine ligand complexes as an alternative to rhodium-based catalysts for the efficient hydroformylation of propene.
    Yao C; Xiong W; Sun H; Li C; Wu Y; Zhang Z; Hu X
    Org Biomol Chem; 2023 Aug; 21(31):6410-6418. PubMed ID: 37505192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-precision catalysts: regioselective hydroformylation of internal alkenes by encapsulated rhodium complexes.
    Kuil M; Soltner T; van Leeuwen PW; Reek JN
    J Am Chem Soc; 2006 Sep; 128(35):11344-5. PubMed ID: 16939244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermetallic Nanocatalyst for Highly Active Heterogeneous Hydroformylation.
    Chen M; Gupta G; Ordonez CW; Lamkins AR; Ward CJ; Abolafia CA; Zhang B; Roling LT; Huang W
    J Am Chem Soc; 2021 Dec; 143(49):20907-20915. PubMed ID: 34859675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Palladium-catalyzed Reppe carbonylation.
    Kiss G
    Chem Rev; 2001 Nov; 101(11):3435-56. PubMed ID: 11840990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilized bisdiazaphospholane catalysts for asymmetric hydroformylation.
    Adint TT; Landis CR
    J Am Chem Soc; 2014 Jun; 136(22):7943-53. PubMed ID: 24742285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bimetallic hydroformylation catalyst: high regioselectivity and reactivity through homobimetallic cooperativity.
    Broussard ME; Juma B; Train SG; Peng WJ; Laneman SA; Stanley GG
    Science; 1993 Jun; 260(5115):1784-8. PubMed ID: 17793656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Interfacial Sites between Metallic and Oxidized Cobalt for Propene Hydroformylation.
    Pu Z; Zhao J; Yin H; Zhao J; Ma X; Zeng J
    Nano Lett; 2024 Jan; 24(3):852-858. PubMed ID: 38051031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh
    Lang R; Li T; Matsumura D; Miao S; Ren Y; Cui YT; Tan Y; Qiao B; Li L; Wang A; Wang X; Zhang T
    Angew Chem Int Ed Engl; 2016 Dec; 55(52):16054-16058. PubMed ID: 27862789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectively Regulating the Microenvironment of Atomically Dispersed Rh through Co and Pi to Promote the Selectivity in Olefin Hydroformylation.
    Wei B; Liu X; Hua K; Deng Y; Wang H; Sun Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15113-15121. PubMed ID: 33757285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.