BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 38659083)

  • 1. Deciphering the importance of culture pH on CD22 CAR T-cells characteristics.
    Prochazkova M; Dreyzin A; Shao L; Garces P; Cai Y; Shi R; Pelayo A; Kim YS; Pham V; Frodigh SE; Fenton S; Karangwa C; Su Y; Martin K; Zhang N; Highfill SL; Somerville RP; Shah NN; Stroncek DF; Jin P
    J Transl Med; 2024 Apr; 22(1):384. PubMed ID: 38659083
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy and safety of CD22 chimeric antigen receptor (CAR) T cell therapy in patients with B cell malignancies: a protocol for a systematic review and meta-analysis.
    Adeel K; Fergusson NJ; Shorr R; Atkins H; Hay KA
    Syst Rev; 2021 Jan; 10(1):35. PubMed ID: 33478595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficacy and toxicity for CD22/CD19 chimeric antigen receptor T-cell therapy in patients with relapsed/refractory aggressive B-cell lymphoma involving the gastrointestinal tract.
    Zeng C; Cheng J; Li T; Huang J; Li C; Jiang L; Wang J; Chen L; Mao X; Zhu L; Lou Y; Zhou J; Zhou X
    Cytotherapy; 2020 Mar; 22(3):166-171. PubMed ID: 32063474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD4/CD8 T-Cell Selection Affects Chimeric Antigen Receptor (CAR) T-Cell Potency and Toxicity: Updated Results From a Phase I Anti-CD22 CAR T-Cell Trial.
    Shah NN; Highfill SL; Shalabi H; Yates B; Jin J; Wolters PL; Ombrello A; Steinberg SM; Martin S; Delbrook C; Hoffman L; Little L; Ponduri A; Qin H; Qureshi H; Dulau-Florea A; Salem D; Wang HW; Yuan C; Stetler-Stevenson M; Panch S; Tran M; Mackall CL; Stroncek DF; Fry TJ
    J Clin Oncol; 2020 Jun; 38(17):1938-1950. PubMed ID: 32286905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacturing development and clinical production of NKG2D chimeric antigen receptor-expressing T cells for autologous adoptive cell therapy.
    Murad JM; Baumeister SH; Werner L; Daley H; Trébéden-Negre H; Reder J; Sentman CL; Gilham D; Lehmann F; Snykers S; Sentman ML; Wade T; Schmucker A; Fanger MW; Dranoff G; Ritz J; Nikiforow S
    Cytotherapy; 2018 Jul; 20(7):952-963. PubMed ID: 30180944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells.
    Singh N; Frey NV; Engels B; Barrett DM; Shestova O; Ravikumar P; Cummins KD; Lee YG; Pajarillo R; Chun I; Shyu A; Highfill SL; Price A; Zhao L; Peng L; Granda B; Ramones M; Lu XM; Christian DA; Perazzelli J; Lacey SF; Roy NH; Burkhardt JK; Colomb F; Damra M; Abdel-Mohsen M; Liu T; Liu D; Standley DM; Young RM; Brogdon JL; Grupp SA; June CH; Maude SL; Gill S; Ruella M
    Nat Med; 2021 May; 27(5):842-850. PubMed ID: 33888899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Haematology laboratory parameters to assess efficacy of CD19-, CD22-, CD33-, and CD123-directed chimeric antigen receptor T-cell therapy in haematological malignancies.
    Drumheller B; Gebre K; Lockhart B; Margolskee E; Obstfeld A; Paessler M; Pillai V
    Int J Lab Hematol; 2022 Aug; 44(4):750-758. PubMed ID: 35419923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient elimination of primary B-ALL cells in vitro and in vivo using a novel 4-1BB-based CAR targeting a membrane-distal CD22 epitope.
    Velasco-Hernandez T; Zanetti SR; Roca-Ho H; Gutierrez-Aguera F; Petazzi P; Sánchez-Martínez D; Molina O; Baroni ML; Fuster JL; Ballerini P; Bueno C; Fernandez-Fuentes N; Engel P; Menendez P
    J Immunother Cancer; 2020 Aug; 8(2):. PubMed ID: 32788237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD19 CAR-T Cells With Membrane-Bound IL-15 for B-Cell Acute Lymphoblastic Leukemia After Failure of CD19 and CD22 CAR-T Cells: Case Report.
    Sun Y; Su Y; Wang Y; Liu N; Li Y; Chen J; Qiao Z; Niu J; Hu J; Zhang B; Ning H; Hu L
    Front Immunol; 2021; 12():728962. PubMed ID: 34691036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Safety and efficacy of co-administration of CD19 and CD22 CAR-T cells in children with B-ALL relapse after CD19 CAR-T therapy.
    Li W; Ding L; Shi W; Wan X; Yang X; Yang J; Wang T; Song L; Wang X; Ma Y; Luo C; Tang J; Gu L; Chen J; Lu J; Tang Y; Li B
    J Transl Med; 2023 Mar; 21(1):213. PubMed ID: 36949487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing lisocabtagene maraleucel chimeric antigen receptor T-cell manufacturing for improved process, product quality and consistency across CD19
    Teoh J; Brown LF
    Cytotherapy; 2022 Sep; 24(9):962-973. PubMed ID: 35610089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential CD19 and CD22 chimeric antigen receptor T-cell therapy for childhood refractory or relapsed B-cell acute lymphocytic leukaemia: a single-arm, phase 2 study.
    Pan J; Tang K; Luo Y; Seery S; Tan Y; Deng B; Liu F; Xu X; Ling Z; Song W; Xu J; Duan J; Wang Z; Li C; Wang K; Zhang Y; Yu X; Zheng Q; Zhao L; Zhang J; Chang AH; Feng X
    Lancet Oncol; 2023 Nov; 24(11):1229-1241. PubMed ID: 37863088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of manufacturing conditions for chimeric antigen receptor T cells to favor cells with a central memory phenotype.
    Gargett T; Truong N; Ebert LM; Yu W; Brown MP
    Cytotherapy; 2019 Jun; 21(6):593-602. PubMed ID: 30975603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD22 CAR T-cell therapy in refractory or relapsed B acute lymphoblastic leukemia.
    Pan J; Niu Q; Deng B; Liu S; Wu T; Gao Z; Liu Z; Zhang Y; Qu X; Zhang Y; Liu S; Ling Z; Lin Y; Zhao Y; Song Y; Tan X; Zhang Y; Li Z; Yin Z; Chen B; Yu X; Yan J; Zheng Q; Zhou X; Gao J; Chang AH; Feng X; Tong C
    Leukemia; 2019 Dec; 33(12):2854-2866. PubMed ID: 31110217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel and efficient tandem CD19- and CD22-directed CAR for B cell ALL.
    Zanetti SR; Velasco-Hernandez T; Gutierrez-Agüera F; Díaz VM; Romecín PA; Roca-Ho H; Sánchez-Martínez D; Tirado N; Baroni ML; Petazzi P; Torres-Ruiz R; Molina O; Bataller A; Fuster JL; Ballerini P; Juan M; Jeremias I; Bueno C; Menéndez P
    Mol Ther; 2022 Feb; 30(2):550-563. PubMed ID: 34478871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic preclinical evaluation of CD33-directed chimeric antigen receptor T cell immunotherapy for acute myeloid leukemia defines optimized construct design.
    Qin H; Yang L; Chukinas JA; Shah N; Tarun S; Pouzolles M; Chien CD; Niswander LM; Welch AR; Taylor N; Tasian SK; Fry TJ
    J Immunother Cancer; 2021 Sep; 9(9):. PubMed ID: 34531250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment and validation of in-house cryopreserved CAR/TCR-T cell flow cytometry quality control.
    Cai Y; Prochazkova M; Jiang C; Song HW; Jin J; Moses L; Gkitsas N; Somerville RP; Highfill SL; Panch S; Stroncek DF; Jin P
    J Transl Med; 2021 Dec; 19(1):523. PubMed ID: 34952597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/Cas9-Engineered Universal CD19/CD22 Dual-Targeted CAR-T Cell Therapy for Relapsed/Refractory B-cell Acute Lymphoblastic Leukemia.
    Hu Y; Zhou Y; Zhang M; Ge W; Li Y; Yang L; Wei G; Han L; Wang H; Yu S; Chen Y; Wang Y; He X; Zhang X; Gao M; Yang J; Li X; Ren J; Huang H
    Clin Cancer Res; 2021 May; 27(10):2764-2772. PubMed ID: 33627493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and Validation of a Good Manufacturing Process for IL-4-Driven Expansion of Chimeric Cytokine Receptor-Expressing CAR T-Cells.
    van Schalkwyk MCI; van der Stegen SJC; Bosshard-Carter L; Graves H; Papa S; Parente-Pereira AC; Farzaneh F; Fisher CD; Hope A; Adami A; Maher J
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes to culture pH and dissolved oxygen can enhance chimeric antigen receptor T-cell generation and differentiation.
    Lamas R; Ulrey R; Ahuja S; Sargent A
    Biotechnol Prog; 2022 Sep; 38(5):e3275. PubMed ID: 35567431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.