These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38659342)

  • 41. Distribution and structure of N atoms in multiwalled carbon nanotubes using variable-energy X-ray photoelectron spectroscopy.
    Choi HC; Park J; Kim B
    J Phys Chem B; 2005 Mar; 109(10):4333-40. PubMed ID: 16851499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amphiphilic Cobalt Phthalocyanine Boosts Carbon Dioxide Reduction.
    Zhou S; Zhang LJ; Zhu L; Tung CH; Wu LZ
    Adv Mater; 2023 Oct; 35(41):e2300923. PubMed ID: 37503663
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carbon nanotubes-based PdM bimetallic catalysts through N
    Begum H; Ahmed MS; Lee DW; Kim YB
    Sci Rep; 2019 Jul; 9(1):11051. PubMed ID: 31363157
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Translating Catalyst-Polymer Composites from Liquid to Gas-Fed CO
    Yao L; Yin C; Rivera-Cruz KE; McCrory CCL; Singh N
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31438-31448. PubMed ID: 37348071
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Single Ni atoms with higher positive charges induced by hydroxyls for electrocatalytic CO
    Yang X; Cheng J; Fang B; Xuan X; Liu N; Yang X; Zhou J
    Nanoscale; 2020 Sep; 12(35):18437-18445. PubMed ID: 32941583
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Probing the Synergistic Effects of Mg
    Wang YQ; Dan XH; Wang X; Yi ZY; Fu J; Feng YC; Hu JS; Wang D; Wan LJ
    J Am Chem Soc; 2022 Nov; 144(43):20126-20133. PubMed ID: 36259686
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Insight into Impacts of π-π Assembly on Phthalocyanine Based Heterogeneous Molecular Electrocatalysis.
    Yang J; Zhang C; He R; Yao J; Wang J
    J Phys Chem Lett; 2024 May; 15(17):4705-4710. PubMed ID: 38656800
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quantitative Immobilization of Phthalocyanine onto Bacterial Cellulose for Construction of a High-Performance Catalytic Membrane Reactor.
    Chen S; Teng Q
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773206
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Maximizing Electroactive Sites in a Three-Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis.
    Han B; Jin Y; Chen B; Zhou W; Yu B; Wei C; Wang H; Wang K; Chen Y; Chen B; Jiang J
    Angew Chem Int Ed Engl; 2022 Jan; 61(1):e202114244. PubMed ID: 34716743
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Scalable Production of Cobalt Phthalocyanine Nanotubes: Efficient and Robust Hollow Electrocatalyst for Ammonia Synthesis at Room Temperature.
    Ghorai UK; Paul S; Ghorai B; Adalder A; Kapse S; Thapa R; Nagendra A; Gain A
    ACS Nano; 2021 Mar; 15(3):5230-5239. PubMed ID: 33646739
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Catalytic decomposition of toxic chemicals over iron group metals supported on carbon nanotubes.
    Li L; Chen C; Chen L; Zhu Z; Hu J
    Environ Sci Technol; 2014 Mar; 48(6):3372-7. PubMed ID: 24568676
    [TBL] [Abstract][Full Text] [Related]  

  • 52.
    Deng Y; Zhao J; Wang S; Chen R; Ding J; Tsai HJ; Zeng WJ; Hung SF; Xu W; Wang J; Jaouen F; Li X; Huang Y; Liu B
    J Am Chem Soc; 2023 Apr; 145(13):7242-7251. PubMed ID: 36877826
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tuning the Hydroxyl Density of MXene to Regulate the Electrochemical Performance of Anchored Cobalt Phthalocyanine for CO
    Yu F; Zhou Z; You Y; Zhan J; Yao T; Zhang LH
    ACS Appl Mater Interfaces; 2023 May; 15(20):24346-24353. PubMed ID: 37184859
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Graphene-enhanced intermolecular interaction at interface between copper- and cobalt-phthalocyanines.
    Dou WD; Huang SP; Lee CS
    J Chem Phys; 2015 Oct; 143(13):134706. PubMed ID: 26450327
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular Modification of Single Cobalt Sites Boosts the Catalytic Activity of CO
    Zhong Y; Kong X; Geng Z; Zeng J; Luo X; Zhang L
    Chemphyschem; 2020 Sep; 21(18):2051-2055. PubMed ID: 32721090
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Proton/Electron Donors Enhancing Electrocatalytic Activity of Supported Conjugated Microporous Polymers for CO
    Wang R; Wang X; Weng W; Yao Y; Kidkhunthod P; Wang C; Hou Y; Guo J
    Angew Chem Int Ed Engl; 2022 Jan; 61(5):e202115503. PubMed ID: 34851556
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Electrochemical performance of annealed cobalt-benzotriazole/CNTs catalysts towards the oxygen reduction reaction.
    Morozan A; Jégou P; Jousselme B; Palacin S
    Phys Chem Chem Phys; 2011 Dec; 13(48):21600-7. PubMed ID: 22068682
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heterogeneous Nature of Electrocatalytic CO/CO
    Wu Y; Hu G; Rooney CL; Brudvig GW; Wang H
    ChemSusChem; 2020 Dec; 13(23):6296-6299. PubMed ID: 32668072
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Revealing a Double-Volcano-Like Structure-Activity Relationship for Substitution-Functionalized Metal-Phthalocyanine Catalysts toward Electrochemical CO
    Zhu W; Liu S; Zhao K; Ye G; Huang K; He Z
    Small; 2024 Jan; 20(4):e2306144. PubMed ID: 37715327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and catalysis of location-specific cobalt nanoparticles supported by multiwall carbon nanotubes for Fischer-Tropsch synthesis.
    Zhu Y; Ye Y; Zhang S; Leong ME; Tao FF
    Langmuir; 2012 May; 28(21):8275-80. PubMed ID: 22583353
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.