These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38659372)

  • 1. Unravelling the Photoelectrochemical Water Splitting of Nanometer-Thick Carbon Nitride Layer.
    Zhi F; Wu S; Lai C; He M; Deng W; Zhang D; Peng X; Wu Q; Xia J; Lu ZH; Wang M; Zhang WG; Xu J; Liu C; Peng G
    Small; 2024 Apr; ():e2401123. PubMed ID: 38659372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes.
    Qin J; Barrio J; Peng G; Tzadikov J; Abisdris L; Volokh M; Shalom M
    Nat Commun; 2020 Sep; 11(1):4701. PubMed ID: 32943629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Nanojunction Polymer Photoelectrode for Efficient Charge Transport and Separation.
    Ruan Q; Luo W; Xie J; Wang Y; Liu X; Bai Z; Carmalt CJ; Tang J
    Angew Chem Int Ed Engl; 2017 Jul; 56(28):8221-8225. PubMed ID: 28520233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Efficient Polymeric Carbon Nitride Photoanode with Excellent Electron Diffusion Length and Hole Extraction Properties.
    Karjule N; Barrio J; Xing L; Volokh M; Shalom M
    Nano Lett; 2020 Jun; 20(6):4618-4624. PubMed ID: 32407122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NC Meets CN: Porous Photoanodes with Polymeric Carbon Nitride/ZnSe Nanocrystal Heterojunctions for Photoelectrochemical Applications.
    Mondal S; Naor T; Volokh M; Stone D; Albero J; Levi A; Vakahi A; García H; Banin U; Shalom M
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38153-38162. PubMed ID: 39010305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boron and Sodium Doping of Polymeric Carbon Nitride Photoanodes for Photoelectrochemical Water Splitting.
    Shmila T; Mondal S; Barzilai S; Karjule N; Volokh M; Shalom M
    Small; 2023 Oct; 19(42):e2303602. PubMed ID: 37344993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of Oxygen-Vacancy-Rich NiFe-Layered Double Hydroxide onto Silicon as Photoanode for Enhanced Photoelectrochemical Water Oxidation.
    Chen C; Lu Y; Fan R; Shen M
    ChemSusChem; 2020 Aug; 13(15):3893-3900. PubMed ID: 32400054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of the TiO
    Fan X; Wang T; Gao B; Gong H; Xue H; Guo H; Song L; Xia W; Huang X; He J
    Langmuir; 2016 Dec; 32(50):13322-13332. PubMed ID: 27936327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robust Carbon Nitride Homojunction Photoelectrode for Solar-Driven Water Splitting.
    Lei Y; Si W; Wang Y; Tan H; Di L; Wang L; Liang J; Hou F
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6726-6734. PubMed ID: 36692988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells.
    Volokh M; Peng G; Barrio J; Shalom M
    Angew Chem Int Ed Engl; 2019 May; 58(19):6138-6151. PubMed ID: 30020555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal-Face Tailored Graphitic Carbon Nitride Films for High-Performance Photoelectrochemical Cells.
    Xiong W; Chen S; Huang M; Wang Z; Lu Z; Zhang RQ
    ChemSusChem; 2018 Aug; 11(15):2497-2501. PubMed ID: 29966036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interface-engineered Z-scheme of BiVO
    Mane P; Bae H; Burungale V; Lee SW; Misra M; Parbat H; Kadam AN; Ha JS
    Chemosphere; 2022 Dec; 308(Pt 1):136166. PubMed ID: 36037961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Charge Transfer Doping of Carbon Nitride Films through Noncovalent Iodination for Enhanced Photoelectrochemical Performance: Combined Experimental and Computational Insights.
    Tian H; Zhao Y; Oo MT; Huang F; Huang M; Xiong W; Yu Y; Zhang RQ
    Small; 2022 Nov; 18(46):e2200510. PubMed ID: 36209383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Water-Splitting Carbon Nitride Photoelectrochemical Cell with Efficient Charge Separation and Remarkably Low Onset Potential.
    Peng G; Albero J; Garcia H; Shalom M
    Angew Chem Int Ed Engl; 2018 Nov; 57(48):15807-15811. PubMed ID: 30328234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Integration between Si and Catalyst for High-Performance Photoanodes by a Multifunctional Bridging Layer.
    Guo B; Batool A; Xie G; Boddula R; Tian L; Jan SU; Gong JR
    Nano Lett; 2018 Feb; 18(2):1516-1521. PubMed ID: 29360384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent Progress on Photoelectrochemical Water Splitting of Graphitic Carbon Nitride (g-CN) Electrodes.
    Zhu Y; He L; Ni Y; Li G; Li D; Lin W; Wang Q; Li L; Yang H
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strongly Coupled Ternary Hybrid Aerogels of N-deficient Porous Graphitic-C3N4 Nanosheets/N-Doped Graphene/NiFe-Layered Double Hydroxide for Solar-Driven Photoelectrochemical Water Oxidation.
    Hou Y; Wen Z; Cui S; Feng X; Chen J
    Nano Lett; 2016 Apr; 16(4):2268-77. PubMed ID: 26963768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct Growth of Polymeric Carbon Nitride Nanosheet Photoanode for Greatly Efficient Photoelectrochemical Water-Splitting.
    Zhang J; Zhang J; Dong C; Xia Y; Jiang L; Wang G; Wang R; Chen J
    Small; 2023 Aug; 19(34):e2208049. PubMed ID: 37127867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Deposition of Crystalline Ta
    Hajibabaei H; Little DJ; Pandey A; Wang D; Mi Z; Hamann TW
    ACS Appl Mater Interfaces; 2019 May; 11(17):15457-15466. PubMed ID: 30964262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced photoelectrochemical sensing performance of graphitic carbon nitride by nitrogen vacancies engineering.
    Yan P; Dong J; Mo Z; Xu L; Qian J; Xia J; Zhang J; Li H
    Biosens Bioelectron; 2020 Jan; 148():111802. PubMed ID: 31665671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.