These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38659410)

  • 1. Organic hole transport materials for high performance PbS quantum dot solar cells.
    Zhang L; Wang S; Shi Y; Xu J; Cao S; Deng Z; Chen Y; Zhang J; Yang X; Meng Z; Fan Q; Sun B
    Chem Commun (Camb); 2024 May; 60(40):5294-5297. PubMed ID: 38659410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reducing the Open-Circuit Voltage Loss of PbS Quantum Dot Solar Cells via Hybrid Ligand Exchange Treatment.
    Huang T; Wu C; Yang J; Hu P; Qian L; Sun T; Xiang C
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):915-923. PubMed ID: 38145458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal PbS Quantum Dot Photodiode Imager with Suppressed Dark Current.
    Wang Y; Hu H; Yuan M; Xia H; Zhang X; Liu J; Yang J; Xu S; Shi Z; He J; Zhang J; Gao L; Tang J; Lan X
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58573-58582. PubMed ID: 38059485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hole transport layer selection toward efficient colloidal PbS quantum dot solar cells.
    Yang G; Zhu Y; Huang J; Xu X; Cui S; Lu Z
    Opt Express; 2019 Sep; 27(20):A1338-A1349. PubMed ID: 31684491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells.
    Biondi M; Choi MJ; Ouellette O; Baek SW; Todorović P; Sun B; Lee S; Wei M; Li P; Kirmani AR; Sagar LK; Richter LJ; Hoogland S; Lu ZH; García de Arquer FP; Sargent EH
    Adv Mater; 2020 Apr; 32(17):e1906199. PubMed ID: 32196136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doped Organic Hole Extraction Layers in Efficient PbS and AgBiS
    Becker-Koch D; Albaladejo-Siguan M; Hofstetter YJ; Solomeshch O; Pohl D; Rellinghaus B; Tessler N; Vaynzof Y
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18750-18757. PubMed ID: 33855853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics.
    Zhang N; Neo DC; Tazawa Y; Li X; Assender HE; Compton RG; Watt AA
    ACS Appl Mater Interfaces; 2016 Aug; 8(33):21417-22. PubMed ID: 27421066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the Efficiency and Stability of PbS Quantum Dot Solar Cells through Engineering an Ultrathin NiO Nanocrystalline Interlayer.
    Liu S; Hu L; Huang S; Zhang W; Ma J; Wang J; Guan X; Lin CH; Kim J; Wan T; Lei Q; Chu D; Wu T
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46239-46246. PubMed ID: 32929953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the photovoltaic performance for PbS QD thin film solar cells through interface engineering.
    Yang Y; Rao Z; Xu Q; Liang Y; Yang L
    J Colloid Interface Sci; 2022 Dec; 627():562-568. PubMed ID: 35870408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stronger Coupling of Quantum Dots in Hole Transport Layer Through Intermediate Ligand Exchange to Enhance the Efficiency of PbS Quantum Dot Solar Cells.
    Wei Y; Ding C; Shi G; Bi H; Li Y; Li H; Liu D; Yang Y; Wang D; Chen S; Wang R; Hayase S; Masuda T; Shen Q
    Small Methods; 2024 Apr; ():e2400015. PubMed ID: 38607951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ligand cleavage enables formation of 1,2-ethanedithiol capped colloidal quantum dot solids.
    Fan JZ; La Croix AD; Yang Z; Howard E; Quintero-Bermudez R; Levina L; Jenkinson NM; Spear NJ; Li Y; Ouellette O; Lu ZH; Sargent EH; Macdonald JE
    Nanoscale; 2019 Jun; 11(22):10774-10781. PubMed ID: 31134264
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Organic and Inorganic Passivation Mechanism of ZnO Nanowires for Construction of Efficient Bulk Heterojunction Quantum Dot Solar Cells.
    Wei Y; Nakamura M; Ding C; Liu D; Li H; Li Y; Yang Y; Wang D; Wang R; Hayase S; Masuda T; Shen Q
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36268-36276. PubMed ID: 35894431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient PbSe Colloidal Quantum Dot Solar Cells Using SnO
    Zhu M; Liu X; Liu S; Chen C; He J; Liu W; Yang J; Gao L; Niu G; Tang J; Zhang J
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2566-2571. PubMed ID: 31854183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells.
    Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PbS/Cd₃P₂ quantum heterojunction colloidal quantum dot solar cells.
    Cao H; Liu Z; Zhu X; Peng J; Hu L; Xu S; Luo M; Ma W; Tang J; Liu H
    Nanotechnology; 2015 Jan; 26(3):035401. PubMed ID: 25548866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Performance PbS Quantum Dot/Graphene Hybrid Solar Cell with Efficient Charge Extraction.
    Kim BS; Neo DC; Hou B; Park JB; Cho Y; Zhang N; Hong J; Pak S; Lee S; Sohn JI; Assender HE; Watt AA; Cha S; Kim JM
    ACS Appl Mater Interfaces; 2016 Jun; 8(22):13902-8. PubMed ID: 27213219
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cost-Effective and Semi-Transparent PbS Quantum Dot Solar Cells Using Copper Electrodes.
    Tavakoli Dastjerdi H; Qi P; Fan Z; Tavakoli MM
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):818-825. PubMed ID: 31820641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of colloidal PbS quantum dot-based solar cells with near infrared emission.
    Lim S; Kim Y; Lee J; Han CJ; Kang J; Kim J
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9346-50. PubMed ID: 25971063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Efficient Flexible Quantum Dot Solar Cells with Improved Electron Extraction Using MgZnO Nanocrystals.
    Zhang X; Santra PK; Tian L; Johansson MB; Rensmo H; Johansson EMJ
    ACS Nano; 2017 Aug; 11(8):8478-8487. PubMed ID: 28763616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charge generation in PbS quantum dot solar cells characterized by temperature-dependent steady-state photoluminescence.
    Gao J; Zhang J; van de Lagemaat J; Johnson JC; Beard MC
    ACS Nano; 2014 Dec; 8(12):12814-25. PubMed ID: 25485555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.