These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38659442)

  • 81. Detection of trait donors and QTL boundaries for early blight resistance using local ancestry inference in a library of genomic sequences for tomato.
    Anderson TA; Sudermann MA; DeJong DM; Francis DM; Smart CD; Mutschler MA
    Plant J; 2024 Jan; 117(2):404-415. PubMed ID: 37856521
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Resistance to Tomato Yellow Leaf Curl Virus in Tomato Germplasm.
    Yan Z; Pérez-de-Castro A; Díez MJ; Hutton SF; Visser RGF; Wolters AA; Bai Y; Li J
    Front Plant Sci; 2018; 9():1198. PubMed ID: 30177938
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Exogenous melatonin delays leaves senescence and enhances saline and alkaline stress tolerance in grape seedlings.
    Yang Z; Yang X; Wei S; Shen F; Ji W
    Plant Signal Behav; 2024 Dec; 19(1):2334511. PubMed ID: 38650457
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A 21-bp InDel in the promoter of
    Wang Y; Shi C; Ge P; Li F; Zhu L; Wang Y; Tao J; Zhang X; Dong H; Gai W; Wang F; Ye Z; Grierson D; Xu W; Zhang Y
    Hortic Res; 2023 Mar; 10(3):uhad009. PubMed ID: 36960428
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Comparative transcriptome analysis of two rice genotypes differing in their tolerance to saline-alkaline stress.
    Li Q; Ma C; Tai H; Qiu H; Yang A
    PLoS One; 2020; 15(12):e0243112. PubMed ID: 33259539
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Sequence diversity in three tomato species: SNPs, markers, and molecular evolution.
    Jiménez-Gómez JM; Maloof JN
    BMC Plant Biol; 2009 Jul; 9():85. PubMed ID: 19575805
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Natural Variation in the Promoter of GSE5 Contributes to Grain Size Diversity in Rice.
    Duan P; Xu J; Zeng D; Zhang B; Geng M; Zhang G; Huang K; Huang L; Xu R; Ge S; Qian Q; Li Y
    Mol Plant; 2017 May; 10(5):685-694. PubMed ID: 28366824
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments.
    Frary A; Xu Y; Liu J; Mitchell S; Tedeschi E; Tanksley S
    Theor Appl Genet; 2005 Jul; 111(2):291-312. PubMed ID: 15926074
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Genomics-assisted prediction of salt and alkali tolerances and functional marker development in apple rootstocks.
    Liu J; Shen F; Xiao Y; Fang H; Qiu C; Li W; Wu T; Xu X; Wang Y; Zhang X; Han Z
    BMC Genomics; 2020 Aug; 21(1):550. PubMed ID: 32778069
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Cultivated Tomato (
    Tamburino R; Sannino L; Cafasso D; Cantarella C; Orrù L; Cardi T; Cozzolino S; D'Agostino N; Scotti N
    Plants (Basel); 2020 Oct; 9(11):. PubMed ID: 33114641
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Characterization of Na
    Chuamnakthong S; Nampei M; Ueda A
    Plant Sci; 2019 Oct; 287():110171. PubMed ID: 31481219
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Genomic basis of selective breeding from the closest wild relative of large-fruited tomato.
    Yang J; Liu Y; Liang B; Yang Q; Li X; Chen J; Li H; Lyu Y; Lin T
    Hortic Res; 2023 Aug; 10(8):uhad142. PubMed ID: 37564272
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Integrated Transcriptomic and Metabolomic Analyses Uncover the Differential Mechanism in Saline-Alkaline Tolerance between
    Wang J; Hu K; Wang J; Gong Z; Li S; Deng X; Li Y
    Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569762
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Introgression lines of Solanum sitiens, a wild nightshade of the Atacama Desert, in the genome of cultivated tomato.
    Chetelat RT; Qin X; Tan M; Burkart-Waco D; Moritama Y; Huo X; Wills T; Pertuzé R
    Plant J; 2019 Nov; 100(4):836-850. PubMed ID: 31323151
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Transgenic tomatoes for abiotic stress tolerance: status and way ahead.
    Krishna R; Karkute SG; Ansari WA; Jaiswal DK; Verma JP; Singh M
    3 Biotech; 2019 Apr; 9(4):143. PubMed ID: 30944790
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Interactions of Tomato and
    Soltis NE; Atwell S; Shi G; Fordyce R; Gwinner R; Gao D; Shafi A; Kliebenstein DJ
    Plant Cell; 2019 Feb; 31(2):502-519. PubMed ID: 30647076
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Analysis of Salinity Tolerance in Tomato Introgression Lines Based on Morpho-Physiological and Molecular Traits.
    Ali AAM; Romdhane WB; Tarroum M; Al-Dakhil M; Al-Doss A; Alsadon AA; Hassairi A
    Plants (Basel); 2021 Nov; 10(12):. PubMed ID: 34961065
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Role of Polyamines in the Response to Salt Stress of Tomato.
    Borromeo I; Domenici F; Del Gallo M; Forni C
    Plants (Basel); 2023 Apr; 12(9):. PubMed ID: 37176913
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Salt tolerance mechanisms in the
    Bonarota MS; Kosma DK; Barrios-Masias FH
    AoB Plants; 2022 Feb; 14(1):plab072. PubMed ID: 35079327
    [TBL] [Abstract][Full Text] [Related]  

  • 100. A bHLH transcription factor, SlbHLH96, promotes drought tolerance in tomato.
    Liang Y; Ma F; Li B; Guo C; Hu T; Zhang M; Liang Y; Zhu J; Zhan X
    Hortic Res; 2022; 9():uhac198. PubMed ID: 36467272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.