These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 38659639)
1. Transformer-based de novo peptide sequencing for data-independent acquisition mass spectrometry. Ebrahimi S; Guo X ArXiv; 2024 Jun; ():. PubMed ID: 38659639 [TBL] [Abstract][Full Text] [Related]
2. Transformer-based de novo peptide sequencing for data-independent acquisition mass spectrometry. Ebrahimi S; Guo X Proc IEEE Int Symp Bioinformatics Bioeng; 2023 Dec; 2023():28-35. PubMed ID: 38665266 [TBL] [Abstract][Full Text] [Related]
3. Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Tran NH; Qiao R; Xin L; Chen X; Liu C; Zhang X; Shan B; Ghodsi A; Li M Nat Methods; 2019 Jan; 16(1):63-66. PubMed ID: 30573815 [TBL] [Abstract][Full Text] [Related]
4. IDIA: An Integrative Signal Extractor for Data-Independent Acquisition Proteomics. Li J; Pan C; Guo X Proceedings (IEEE Int Conf Bioinformatics Biomed); 2022 Dec; 2022():266-269. PubMed ID: 37034305 [TBL] [Abstract][Full Text] [Related]
5. Accurate de novo peptide sequencing using fully convolutional neural networks. Liu K; Ye Y; Li S; Tang H Nat Commun; 2023 Dec; 14(1):7974. PubMed ID: 38042873 [TBL] [Abstract][Full Text] [Related]
6. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction. Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167 [TBL] [Abstract][Full Text] [Related]
7. SWPepNovo: An Efficient De Novo Peptide Sequencing Tool for Large-scale MS/MS Spectra Analysis. Li C; Li K; Li K; Xie X; Lin F Int J Biol Sci; 2019; 15(9):1787-1801. PubMed ID: 31523183 [TBL] [Abstract][Full Text] [Related]
8. Alpha-Tri: a deep neural network for scoring the similarity between predicted and measured spectra improves peptide identification of DIA data. Song J; Yu C Bioinformatics; 2022 Mar; 38(6):1525-1531. PubMed ID: 34999750 [TBL] [Abstract][Full Text] [Related]
9. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Tsou CC; Avtonomov D; Larsen B; Tucholska M; Choi H; Gingras AC; Nesvizhskii AI Nat Methods; 2015 Mar; 12(3):258-64, 7 p following 264. PubMed ID: 25599550 [TBL] [Abstract][Full Text] [Related]
10. Technical advances in proteomics: new developments in data-independent acquisition. Hu A; Noble WS; Wolf-Yadlin A F1000Res; 2016; 5():. PubMed ID: 27092249 [TBL] [Abstract][Full Text] [Related]
11. Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023. Lou R; Shui W Mol Cell Proteomics; 2024 Feb; 23(2):100712. PubMed ID: 38182042 [TBL] [Abstract][Full Text] [Related]
12. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape. Kitata RB; Yang JC; Chen YJ Mass Spectrom Rev; 2023; 42(6):2324-2348. PubMed ID: 35645145 [TBL] [Abstract][Full Text] [Related]
13. PowerNovo: de novo peptide sequencing via tandem mass spectrometry using an ensemble of transformer and BERT models. Petrovskiy DV; Nikolsky KS; Kulikova LI; Rudnev VR; Butkova TV; Malsagova KA; Kopylov AT; Kaysheva AL Sci Rep; 2024 Jul; 14(1):15000. PubMed ID: 38951578 [TBL] [Abstract][Full Text] [Related]
14. Deep learning for peptide identification from metaproteomics datasets. Feng S; Sterzenbach R; Guo X J Proteomics; 2021 Sep; 247():104316. PubMed ID: 34246788 [TBL] [Abstract][Full Text] [Related]
15. Concomitant investigation of crustacean amphipods lipidome and metabolome during the molting cycle by Zeno SWATH data-independent acquisition coupled with electron activated dissociation and machine learning. Brunet TA; Clément Y; Calabrese V; Lemoine J; Geffard O; Chaumot A; Degli-Esposti D; Salvador A; Ayciriex S Anal Chim Acta; 2024 May; 1304():342533. PubMed ID: 38637034 [TBL] [Abstract][Full Text] [Related]
17. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling. Chapman JD; Goodlett DR; Masselon CD Mass Spectrom Rev; 2014; 33(6):452-70. PubMed ID: 24281846 [TBL] [Abstract][Full Text] [Related]
18. A transformer architecture for retention time prediction in liquid chromatography mass spectrometry-based proteomics. Pham TV; Nguyen VV; Vu D; Henneman AA; Richardson RA; Piersma SR; Jimenez CR Proteomics; 2023 Apr; 23(7-8):e2200041. PubMed ID: 36906835 [TBL] [Abstract][Full Text] [Related]
19. Data-Independent Acquisition Coupled to Visible Laser-Induced Dissociation at 473 nm (DIA-LID) for Peptide-Centric Specific Analysis of Cysteine-Containing Peptide Subset. Garcia L; Girod M; Rompais M; Dugourd P; Carapito C; Lemoine J Anal Chem; 2018 Mar; 90(6):3928-3935. PubMed ID: 29465226 [TBL] [Abstract][Full Text] [Related]
20. Recent Developments in Data Independent Acquisition (DIA) Mass Spectrometry: Application of Quantitative Analysis of the Brain Proteome. Li KW; Gonzalez-Lozano MA; Koopmans F; Smit AB Front Mol Neurosci; 2020; 13():564446. PubMed ID: 33424549 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]