These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38659869)

  • 21. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.
    Ye L; Van Eps N; Zimmer M; Ernst OP; Prosser RS
    Nature; 2016 May; 533(7602):265-8. PubMed ID: 27144352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Allosteric modulator ORG27569 induces CB1 cannabinoid receptor high affinity agonist binding state, receptor internalization, and Gi protein-independent ERK1/2 kinase activation.
    Ahn KH; Mahmoud MM; Kendall DA
    J Biol Chem; 2012 Apr; 287(15):12070-82. PubMed ID: 22343625
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi.
    Shim JY; Ahn KH; Kendall DA
    J Biol Chem; 2013 Nov; 288(45):32449-32465. PubMed ID: 24092756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structural domains of the CB1 cannabinoid receptor that contribute to constitutive activity and G-protein sequestration.
    Nie J; Lewis DL
    J Neurosci; 2001 Nov; 21(22):8758-64. PubMed ID: 11698587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular dynamics simulations reveal insights into key structural elements of adenosine receptors.
    Rodríguez D; Piñeiro Á; Gutiérrez-de-Terán H
    Biochemistry; 2011 May; 50(19):4194-208. PubMed ID: 21480628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A cannabinoid receptor 1 mutation proximal to the DRY motif results in constitutive activity and reveals intramolecular interactions involved in receptor activation.
    D'Antona AM; Ahn KH; Wang L; Mierke DF; Lucas-Lenard J; Kendall DA
    Brain Res; 2006 Sep; 1108(1):1-11. PubMed ID: 16879811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligand-specific homology modeling of human cannabinoid (CB1) receptor.
    Ai R; Chang CE
    J Mol Graph Model; 2012 Sep; 38():155-64. PubMed ID: 23079645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transmembrane helical domain of the cannabinoid CB1 receptor.
    Shim JY
    Biophys J; 2009 Apr; 96(8):3251-62. PubMed ID: 19383469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural and Computational Insights into Dynamics and Intermediate States of Orexin 2 Receptor Signaling.
    Yokoi S; Suno R; Mitsutake A
    J Phys Chem B; 2024 Jun; 128(25):6082-6096. PubMed ID: 38722794
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cannabinoid CB1 receptor recognition of endocannabinoids via the lipid bilayer: molecular dynamics simulations of CB1 transmembrane helix 6 and anandamide in a phospholipid bilayer.
    Lynch DL; Reggio PH
    J Comput Aided Mol Des; 2006; 20(7-8):495-509. PubMed ID: 17106765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Exploring the Ligand Efficacy of Cannabinoid Receptor 1 (CB1) using Molecular Dynamics Simulations.
    Jung SW; Cho AE; Yu W
    Sci Rep; 2018 Sep; 8(1):13787. PubMed ID: 30213978
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ligand modulation of the conformational dynamics of the A
    Fernandes DD; Neale C; Gomes GW; Li Y; Malik A; Pandey A; Orazietti AP; Wang X; Ye L; Scott Prosser R; Gradinaru CC
    Sci Rep; 2021 Mar; 11(1):5910. PubMed ID: 33723285
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prediction of the Binding Affinities and Selectivity for CB1 and CB2 Ligands Using Homology Modeling, Molecular Docking, Molecular Dynamics Simulations, and MM-PBSA Binding Free Energy Calculations.
    Ji B; Liu S; He X; Man VH; Xie XQ; Wang J
    ACS Chem Neurosci; 2020 Apr; 11(8):1139-1158. PubMed ID: 32196303
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis for activation of CB1 by an endocannabinoid analog.
    Krishna Kumar K; Robertson MJ; Thadhani E; Wang H; Suomivuori CM; Powers AS; Ji L; Nikas SP; Dror RO; Inoue A; Makriyannis A; Skiniotis G; Kobilka B
    Nat Commun; 2023 May; 14(1):2672. PubMed ID: 37160876
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characteristic structural difference between inactive and active states of orexin 2 receptor determined using molecular dynamics simulations.
    Yokoi S; Mitsutake A
    Biophys Rev; 2022 Feb; 14(1):221-231. PubMed ID: 35340605
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural insights into conformational stability of wild-type and mutant beta1-adrenergic receptor.
    Balaraman GS; Bhattacharya S; Vaidehi N
    Biophys J; 2010 Jul; 99(2):568-77. PubMed ID: 20643076
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How Electrostatic Coupling Enables Conformational Plasticity in a Tyrosine Kinase.
    Tsai CC; Yue Z; Shen J
    J Am Chem Soc; 2019 Sep; 141(38):15092-15101. PubMed ID: 31476863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic conformational states of apo, ATP and cabozantinib bound TAM kinases to differentiate active-inactive kinetic models.
    Naresh GKRS; Guruprasad L
    J Biomol Struct Dyn; 2023; 41(21):11394-11414. PubMed ID: 36591700
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Activation of corticotropin-releasing factor 1 receptor: insights from molecular dynamics simulations.
    Singh R; Ahalawat N; Murarka RK
    J Phys Chem B; 2015 Feb; 119(7):2806-17. PubMed ID: 25607803
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantifying conformational changes in GPCRs: glimpse of a common functional mechanism.
    Dalton JA; Lans I; Giraldo J
    BMC Bioinformatics; 2015 Apr; 16(1):124. PubMed ID: 25902715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.