These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38659989)

  • 21. Generation of Complex Transverse Energy Flow Distributions with Autofocusing Optical Vortex Beams.
    Khonina SN; Porfirev AP; Ustinov AV; Butt MA
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33809025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classical and quantum analysis of propagation invariant vector flat-top beams.
    Bhebhe N; Rosales-Guzman C; Forbes A
    Appl Opt; 2018 Jul; 57(19):5451-5458. PubMed ID: 30117839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of flat-top focus to 2D trapping of large particles.
    Chen H; Toussaint KC
    Opt Express; 2014 Mar; 22(6):6653-60. PubMed ID: 24664014
    [TBL] [Abstract][Full Text] [Related]  

  • 24. LIFTOSCOPE: development of an automated AI-based module for time-effective and contactless analysis and isolation of cells in microtiter plates.
    Narrog F; Lensing R; Piotrowski T; Nottrodt N; Wehner M; Nießing B; König N; Gillner A; Schmitt RH
    J Biol Eng; 2023 Feb; 17(1):10. PubMed ID: 36750866
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of optical vortices through superposition of two Gaussian beams.
    Vaity P; Aadhi A; Singh RP
    Appl Opt; 2013 Sep; 52(27):6652-6. PubMed ID: 24085162
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optimization of beam shaping for ultrasensitive inertial measurement using a phase-only spatial light modulator.
    Chen X; Fang X; Ma D; Liu Y; Cao L; Zhai Y
    Appl Opt; 2022 Feb; 61(6):C55-C64. PubMed ID: 35200998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterizing vortex beams from a spatial light modulator with collinear phase-shifting holography.
    Andersen JM; Alperin SN; Voitiv AA; Holtzmann WG; Gopinath JT; Siemens ME
    Appl Opt; 2019 Jan; 58(2):404-409. PubMed ID: 30645320
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Abruptly Autofocusing Vortex Beams for Rapid Controllable Femtosecond Two-Photon Polymerization.
    Jia E; Xie C; Yang Y; Xiao N; Hu M
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Simple method for efficient reconfigurable optical vortex beam splitting.
    Porfirev AP; Khonina SN
    Opt Express; 2017 Aug; 25(16):18722-18735. PubMed ID: 29041067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laser transfer for circulating tumor cell isolation in liquid biopsy.
    Molpeceres C; Ramos-Medina R; Marquez A; Romero P; Gomez-Fontela M; Candorcio-Simon R; Muñoz A; Lauzurica S; Del Monte-Millan M; Morales M; Muñoz-Martin D; Lopez-Tarruella S; Massarrah T; Martin M
    Int J Bioprint; 2023; 9(4):720. PubMed ID: 37323505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct generation of a narrow-linewidth Laguerre-Gaussian vortex laser in a monolithic nonplanar oscillator.
    Lin G; Cao Y; Ji R; Hou C; Lu Z
    Opt Lett; 2018 Sep; 43(17):4164-4167. PubMed ID: 30160742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Generation of doughnutlike vortex beam with tunable orbital angular momentum from lasers with controlled Hermite-Gaussian modes.
    Chu SC; Ohtomo T; Otsuka K
    Appl Opt; 2008 May; 47(14):2583-91. PubMed ID: 18470253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. All-fiber passively Q-switched laser with flat-top beam emissions.
    Zhang Z; Wang S; Hu X; Wang S; Pu Y; Li H; Wang J
    Opt Lett; 2022 Feb; 47(3):521-524. PubMed ID: 35103666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct generation of red and orange optical vortex beams from an off-axis diode-pumped Pr
    Ma Y; Vallés A; Tung JC; Chen YF; Miyamoto K; Omatsu T
    Opt Express; 2019 Jun; 27(13):18190-18200. PubMed ID: 31252766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-power vortex beam generation enabled by a phased beam array fed at the nonfocal-plane.
    Hou T; Zhang Y; Chang Q; Ma P; Su R; Wu J; Ma Y; Zhou P
    Opt Express; 2019 Feb; 27(4):4046-4059. PubMed ID: 30876027
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vector Vortex Beam Emitter Embedded in a Photonic Chip.
    Chen Y; Xia KY; Shen WG; Gao J; Yan ZQ; Jiao ZQ; Dou JP; Tang H; Lu YQ; Jin XM
    Phys Rev Lett; 2020 Apr; 124(15):153601. PubMed ID: 32357035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrashort vortex from a Gaussian pulse - An achromatic-interferometric approach.
    Naik DN; Saad NA; Rao DN; Viswanathan NK
    Sci Rep; 2017 May; 7(1):2395. PubMed ID: 28539633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Normal modes and mode transformation of pure electron vortex beams.
    Thirunavukkarasu G; Mousley M; Babiker M; Yuan J
    Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2087):. PubMed ID: 28069769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study of propagation of vortex beams in aerosol optical medium.
    Porfirev AP; Kirilenko MS; Khonina SN; Skidanov RV; Soifer VA
    Appl Opt; 2017 Apr; 56(11):E8-E15. PubMed ID: 28414336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hybrid generation and analysis of vector vortex beams.
    Mamani S; Bendau E; Secor J; Ashrafi S; Tu JJ; Alfano RR
    Appl Opt; 2017 Mar; 56(8):2171-2175. PubMed ID: 28375302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.