BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38660316)

  • 1. APSIM-based modeling approach to understand sorghum production environments in Mali.
    Diancoumba M; Kholová J; Adam M; Famanta M; Clerget B; Traore PCS; Weltzien E; Vacksmann M; McLean G; Hammer GL; van Oosterom EJ; Vadez V
    Agron Sustain Dev; 2024; 44(3):25. PubMed ID: 38660316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.
    Truong SK; McCormick RF; Mullet JE
    Front Plant Sci; 2017; 8():335. PubMed ID: 28377779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling adaptation of sorghum in Ethiopia with APSIM-opportunities with G×E×M.
    Tirfessa A; Getachew F; McLean G; van Oosterom E; Jordan D; Hammer G
    Agron Sustain Dev; 2023; 43(1):15. PubMed ID: 36714044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crop modeling suggests limited transpiration would increase yield of sorghum across drought-prone regions of the United States.
    Raymundo R; Mclean G; Sexton-Bowser S; Lipka AE; Morris GP
    Front Plant Sci; 2023; 14():1283339. PubMed ID: 38348164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Niches for Short-Season Grain Legumes in Semi-Arid Eastern Kenya - Coping with the Impacts of Climate Variability.
    Sennhenn A; Njarui DMG; Maass BL; Whitbread AM
    Front Plant Sci; 2017; 8():699. PubMed ID: 28536585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench).
    Sanchez AC; Subudhi PK; Rosenow DT; Nguyen HT
    Plant Mol Biol; 2002; 48(5-6):713-26. PubMed ID: 11999845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative and population genomics suggest a broad role of stay-green loci in the drought adaptation of sorghum.
    Faye JM; Akata EA; Sine B; Diatta C; Cisse N; Fonceka D; Morris GP
    Plant Genome; 2022 Mar; 15(1):e20176. PubMed ID: 34817118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sorghum in dryland: morphological, physiological, and molecular responses of sorghum under drought stress.
    Abreha KB; Enyew M; Carlsson AS; Vetukuri RR; Feyissa T; Motlhaodi T; Ng'uni D; Geleta M
    Planta; 2021 Dec; 255(1):20. PubMed ID: 34894286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photosynthetic Responses to High Temperature and Strong Light Suggest Potential Post-flowering Drought Tolerance of Sorghum Japanese Landrace Takakibi.
    Ohnishi N; Wacera W F; Sakamoto W
    Plant Cell Physiol; 2019 Sep; 60(9):2086-2099. PubMed ID: 31147706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physio-morphological, biochemical, and anatomical traits of drought-tolerant and susceptible sorghum cultivars under pre- and post-anthesis drought.
    Akman H; Zhang C; Ejeta G
    Physiol Plant; 2021 Jun; 172(2):912-921. PubMed ID: 33063861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability of phyllochron, plastochron and rate of increase in height in photoperiod-sensitive sorghum varieties.
    Clerget B; Dingkuhn M; Gozé E; Rattunde HF; Ney B
    Ann Bot; 2008 Mar; 101(4):579-94. PubMed ID: 18230624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environment Characterization in Sorghum (
    Carcedo AJP; Mayor L; Demarco P; Morris GP; Lingenfelser J; Messina CD; Ciampitti IA
    Front Plant Sci; 2022; 13():768610. PubMed ID: 35310654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide association studies identify putative pleiotropic locus mediating drought tolerance in sorghum.
    Maina F; Harou A; Hamidou F; Morris GP
    Plant Direct; 2022 Jun; 6(6):e413. PubMed ID: 35774626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of nitrogen supply on stay-green sorghum in differing post-flowering water regimes.
    Hou X; Xue Q; Jessup KE; Zhang Y; Blaser B; Stewart BA; Baltensperger DD
    Planta; 2021 Sep; 254(4):63. PubMed ID: 34477992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The shifting influence of drought and heat stress for crops in northeast Australia.
    Lobell DB; Hammer GL; Chenu K; Zheng B; McLean G; Chapman SC
    Glob Chang Biol; 2015 Nov; 21(11):4115-27. PubMed ID: 26152643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rainwater harvesting and Leucaena leucocephala biomass rates effects on soil moisture, water use efficiency and Sorghum bicolor [(L.) Moench] productivity in a semi-arid area in Zimbabwe.
    Kugedera AT; Mandumbu R; Nyamadzawo G
    J Sci Food Agric; 2022 Nov; 102(14):6443-6453. PubMed ID: 35567364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crop modeling defines opportunities and challenges for drought escape, water capture, and yield increase using chilling-tolerant sorghum.
    Raymundo R; Sexton-Bowser S; Ciampitti IA; Morris GP
    Plant Direct; 2021 Sep; 5(9):e349. PubMed ID: 34532633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic analysis of NAC transcription factors' gene family and identification of post-flowering drought stress responsive members in sorghum.
    Sanjari S; Shirzadian-Khorramabad R; Shobbar ZS; Shahbazi M
    Plant Cell Rep; 2019 Mar; 38(3):361-376. PubMed ID: 30627770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling the effect of plant water use traits on yield and stay-green expression in sorghum.
    Kholová J; Murugesan T; Kaliamoorthy S; Malayee S; Baddam R; Hammer GL; McLean G; Deshpande S; Hash CT; Craufurd PQ; Vadez V
    Funct Plant Biol; 2014 Oct; 41(11):1019-1034. PubMed ID: 32481055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.