These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38660404)

  • 1. Optimal scheduling of electricity and hydrogen integrated energy system considering multiple uncertainties.
    Chang P; Li C; Zhu Q; Zhu T; Shi J
    iScience; 2024 May; 27(5):109654. PubMed ID: 38660404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimized Demand-Side Day-Ahead Generation Scheduling Model for a Wind-Photovoltaic-Energy Storage Hydrogen Production System.
    Chen K; Peng H; Zhang J; Chen P; Ruan J; Li B; Wang Y
    ACS Omega; 2022 Nov; 7(47):43036-43044. PubMed ID: 36519112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planning electric power system under carbon-price mechanism considering multiple uncertainties - A case study of Tianjin.
    Fu Y; Huang G; Xie Y; Liao R; Yin J
    J Environ Manage; 2020 Sep; 269():110721. PubMed ID: 32560982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multi-Objective Demand Response Optimization Model for Scheduling Loads in a Home Energy Management System.
    Veras JM; Silva IRS; Pinheiro PR; RabĂȘlo RAL; Veloso AFS; Borges FAS; Rodrigues JJPC
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30249018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A robust optimization model for microgrid considering hybrid renewable energy sources under uncertainties.
    Haider H; Jun Y; Rashed GI; Peixiao F; Kamel S; Li Y
    Environ Sci Pollut Res Int; 2023 Jul; 30(34):82470-82484. PubMed ID: 37326728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Time-Scale Optimal Scheduling Strategy for Marine Renewable Energy Based on Deep Reinforcement Learning Algorithm.
    Xu R; Lin F; Shao W; Wang H; Meng F; Li J
    Entropy (Basel); 2024 Apr; 26(4):. PubMed ID: 38667885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cooperative operation strategy of electric vehicle and photovoltaic power station considering carbon reduction benefit under dynamic electricity price.
    Guo D; Li J; Zhang S; Liu R; Sun F; Zhang H; Ma P; Li J
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):92922-92936. PubMed ID: 37501026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Operational Scheduling of Behind-the-Meter Storage Systems Based on Multiple Nonstationary Decomposition and Deep Convolutional Neural Network for Price Forecasting.
    Deng Z; Qi X; Xu T; Zheng Y
    Comput Intell Neurosci; 2022; 2022():9326856. PubMed ID: 35237313
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal demand response aggregation in wholesale electricity markets: Comparative analysis of polyhedral; ellipsoidal and box methods for modeling uncertainties.
    Nojavan S; Hagh MT; Taghizad-Tavana K; Ghanbari-Ghalehjoughi M
    Heliyon; 2024 May; 10(10):e31523. PubMed ID: 38818206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Reinforcement Learning Microgrid Optimization Strategy Considering Priority Flexible Demand Side.
    Sang J; Sun H; Kou L
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal sizing and energy scheduling of isolated microgrid considering the battery lifetime degradation.
    Sufyan M; Abd Rahim N; Tan C; Muhammad MA; Sheikh Raihan SR
    PLoS One; 2019; 14(2):e0211642. PubMed ID: 30763331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated energy system optimal scheduling considering the comprehensive and flexible operation mode of pumping storage.
    Yang X; Chang J; Zhang Z; Zhang J; Xu G
    PLoS One; 2022; 17(10):e0275514. PubMed ID: 36197940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal scheduling of integrated energy system based on improved grey wolf optimization algorithm.
    Du J; Zhang Z; Li M; Guo J; Zhu K
    Sci Rep; 2022 May; 12(1):7095. PubMed ID: 35501451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimal dispatch of integrated energy system with P2G considering carbon trading and demand response.
    Meng Z; Dong F; Chi L
    Environ Sci Pollut Res Int; 2023 Oct; 30(47):104284-104303. PubMed ID: 37700130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributionally robust optimization scheduling of port energy system considering hydrogen production and ammonia synthesis.
    Liu X
    Heliyon; 2024 Mar; 10(5):e27615. PubMed ID: 38495189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Reinforcement Learning for Charging Scheduling of Electric Vehicles Considering Distribution Network Voltage Stability.
    Liu D; Zeng P; Cui S; Song C
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scheduling optimization of wind-thermal interconnected low-carbon power system integrated with hydrogen storage.
    Wang H; Ma X; Zhao X; Wang W
    Environ Sci Pollut Res Int; 2023 Oct; 30(50):109354-109371. PubMed ID: 37924171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-stage SCUC model for distribution networks considering uncertainty and demand response.
    Wang F; Gan L; Zhang P
    Heliyon; 2023 Oct; 9(10):e20189. PubMed ID: 37810800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comprehensive energy efficiency optimization algorithm for steel load considering network reconstruction and demand response.
    Zang Y; Wang S; Ge W; Li Y; Cui J
    Sci Rep; 2023 Nov; 13(1):20345. PubMed ID: 37989859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.