BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 38660466)

  • 1. Rapid sequential clustering of NMDARs, CaMKII, and AMPARs upon activation of NMDARs at developing synapses.
    Chen Y; Liu S; Jacobi AA; Jeng G; Ulrich JD; Stein IS; Patriarchi T; Hell JW
    Front Synaptic Neurosci; 2024; 16():1291262. PubMed ID: 38660466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct perisynaptic and synaptic localization of NMDA and AMPA receptors on ganglion cells in rat retina.
    Zhang J; Diamond JS
    J Comp Neurol; 2006 Oct; 498(6):810-20. PubMed ID: 16927255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area.
    Racca C; Stephenson FA; Streit P; Roberts JD; Somogyi P
    J Neurosci; 2000 Apr; 20(7):2512-22. PubMed ID: 10729331
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast interaction between AMPA and NMDA receptors by intracellular calcium.
    Rozov A; Burnashev N
    Cell Calcium; 2016 Dec; 60(6):407-414. PubMed ID: 27707506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina.
    Chen S; Diamond JS
    J Neurosci; 2002 Mar; 22(6):2165-73. PubMed ID: 11896156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-Serine and Serine Racemase Are Associated with PSD-95 and Glutamatergic Synapse Stability.
    Lin H; Jacobi AA; Anderson SA; Lynch DR
    Front Cell Neurosci; 2016; 10():34. PubMed ID: 26941605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMDA and AMPA receptors contribute similarly to temporal processing in mammalian retinal ganglion cells.
    Stafford BK; Manookin MB; Singer JH; Demb JB
    J Physiol; 2014 Nov; 592(22):4877-89. PubMed ID: 25217374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Astrocytes increase the activity of synaptic GluN2B NMDA receptors.
    Hahn J; Wang X; Margeta M
    Front Cell Neurosci; 2015; 9():117. PubMed ID: 25941471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density.
    Chen X; Levy JM; Hou A; Winters C; Azzam R; Sousa AA; Leapman RD; Nicoll RA; Reese TS
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):E6983-92. PubMed ID: 26604311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reciprocal and activity-dependent regulation of surface AMPA and NMDA receptors in cultured neurons.
    Li GH; Jackson MF; Orser BA; Macdonald JF
    Int J Physiol Pathophysiol Pharmacol; 2009 Jan; 2(1):47-56. PubMed ID: 21383896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMDA receptor-dependent presynaptic inhibition at the calyx of Held synapse of rat pups.
    Oshima-Takago T; Takago H
    Open Biol; 2017 Jul; 7(7):. PubMed ID: 28747405
    [No Abstract]   [Full Text] [Related]  

  • 13. Activity-dependent recruitment of extrasynaptic NMDA receptor activation at an AMPA receptor-only synapse.
    Clark BA; Cull-Candy SG
    J Neurosci; 2002 Jun; 22(11):4428-36. PubMed ID: 12040050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AMPA and NMDA Receptor Trafficking at Cocaine-Generated Synapses.
    Wang YQ; Huang YH; Balakrishnan S; Liu L; Wang YT; Nestler EJ; Schlüter OM; Dong Y
    J Neurosci; 2021 Mar; 41(9):1996-2011. PubMed ID: 33436529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for presynaptically silent synapses in the immature hippocampus.
    Yoon JY; Choi S
    Biochem Biophys Res Commun; 2017 Jan; 482(4):1375-1380. PubMed ID: 27940363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Presynaptic Diversity Revealed by Ca
    Lujan B; Dagostin A; von Gersdorff H
    J Neurosci; 2019 Apr; 39(16):2981-2994. PubMed ID: 30679394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses.
    Glushakov AV; Dennis DM; Sumners C; Seubert CN; Martynyuk AE
    J Neurosci Res; 2003 Apr; 72(1):116-24. PubMed ID: 12645085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making of a Synapse: Recurrent Roles of Drebrin A at Excitatory Synapses Throughout Life.
    Aoki C; Sherpa AD
    Adv Exp Med Biol; 2017; 1006():119-139. PubMed ID: 28865018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental decrease in NMDA receptor desensitization associated with shift to synapse and interaction with postsynaptic density-95.
    Li B; Otsu Y; Murphy TH; Raymond LA
    J Neurosci; 2003 Dec; 23(35):11244-54. PubMed ID: 14657184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAP97-mediated rescue of NMDA receptor surface distribution in a neuronal model of Huntington's disease.
    Ambroziak W; Fourie C; Montgomery JM
    Hippocampus; 2018 Oct; 28(10):707-723. PubMed ID: 30067285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.