BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 38660466)

  • 21. Mechanisms regulating spill-over of synaptic glutamate to extrasynaptic NMDA receptors in mouse substantia nigra dopaminergic neurons.
    Wild AR; Bollands M; Morris PG; Jones S
    Eur J Neurosci; 2015 Nov; 42(9):2633-43. PubMed ID: 26370007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coincident activation of metabotropic glutamate receptors and NMDA receptors (NMDARs) downregulates perisynaptic/extrasynaptic NMDARs and enhances high-fidelity neurotransmission at the developing calyx of Held synapse.
    Joshi I; Yang YM; Wang LY
    J Neurosci; 2007 Sep; 27(37):9989-99. PubMed ID: 17855613
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glutamatergic synapses in the rat nucleus tractus solitarii develop by direct insertion of calcium-impermeable AMPA receptors and without activation of NMDA receptors.
    Balland B; Lachamp P; Strube C; Kessler JP; Tell F
    J Physiol; 2006 Jul; 574(Pt 1):245-61. PubMed ID: 16690712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delayed expression of activity-dependent gating switch in synaptic AMPARs at a central synapse.
    Lesperance LS; Yang YM; Wang LY
    Mol Brain; 2020 Jan; 13(1):6. PubMed ID: 31941524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMDA Receptors at Primary Afferent-Excitatory Neuron Synapses Differentially Sustain Chemotherapy- and Nerve Trauma-Induced Chronic Pain.
    Huang Y; Chen H; Jin D; Chen SR; Pan HL
    J Neurosci; 2023 May; 43(21):3933-3948. PubMed ID: 37185237
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Postsynaptic expression of a new calcium pathway in hippocampal CA3 neurons and its influence on mossy fiber long-term potentiation.
    Kakegawa W; Yamada N; Iino M; Kameyama K; Umeda T; Tsuzuki K; Ozawa S
    J Neurosci; 2002 Jun; 22(11):4312-20. PubMed ID: 12040036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential requirement for NMDAR activity in SAP97β-mediated regulation of the number and strength of glutamatergic AMPAR-containing synapses.
    Liu M; Lewis LD; Shi R; Brown EN; Xu W
    J Neurophysiol; 2014 Feb; 111(3):648-58. PubMed ID: 24225540
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neuroligin1: a cell adhesion molecule that recruits PSD-95 and NMDA receptors by distinct mechanisms during synaptogenesis.
    Barrow SL; Constable JR; Clark E; El-Sabeawy F; McAllister AK; Washbourne P
    Neural Dev; 2009 May; 4():17. PubMed ID: 19450252
    [TBL] [Abstract][Full Text] [Related]  

  • 29. GluN2B subunits of the NMDA receptor contribute to the AMPA receptor internalization during long-term depression in the lateral amygdala of juvenile rats.
    Yu SY; Wu DC; Zhan RZ
    Neuroscience; 2010 Dec; 171(4):1102-8. PubMed ID: 20884329
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of neuronal PKA signaling through AKAP targeting dynamics.
    Dell'Acqua ML; Smith KE; Gorski JA; Horne EA; Gibson ES; Gomez LL
    Eur J Cell Biol; 2006 Jul; 85(7):627-33. PubMed ID: 16504338
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium/calmodulin-dependent protein kinase II mediates hippocampal glutamatergic plasticity during benzodiazepine withdrawal.
    Shen G; Van Sickle BJ; Tietz EI
    Neuropsychopharmacology; 2010 Aug; 35(9):1897-909. PubMed ID: 20445501
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Distinct roles for ionotropic and metabotropic glutamate receptors in the maturation of excitatory synapses.
    Gomperts SN; Carroll R; Malenka RC; Nicoll RA
    J Neurosci; 2000 Mar; 20(6):2229-37. PubMed ID: 10704498
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differences in the expression of AMPA and NMDA receptors between axospinous perforated and nonperforated synapses are related to the configuration and size of postsynaptic densities.
    Ganeshina O; Berry RW; Petralia RS; Nicholson DA; Geinisman Y
    J Comp Neurol; 2004 Jan; 468(1):86-95. PubMed ID: 14648692
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synapse-specific expression of functional presynaptic NMDA receptors in rat somatosensory cortex.
    Brasier DJ; Feldman DE
    J Neurosci; 2008 Feb; 28(9):2199-211. PubMed ID: 18305253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CaMKII translocation requires local NMDA receptor-mediated Ca2+ signaling.
    Thalhammer A; Rudhard Y; Tigaret CM; Volynski KE; Rusakov DA; Schoepfer R
    EMBO J; 2006 Dec; 25(24):5873-83. PubMed ID: 17124502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Endogenous activation of presynaptic NMDA receptors enhances glutamate release from the primary afferents in the spinal dorsal horn in a rat model of neuropathic pain.
    Yan X; Jiang E; Gao M; Weng HR
    J Physiol; 2013 Apr; 591(7):2001-19. PubMed ID: 23359671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acute neuregulin-1 signaling influences AMPA receptor mediated responses in cultured cerebellar granule neurons.
    Fenster C; Vullhorst D; Buonanno A
    Brain Res Bull; 2012 Jan; 87(1):21-9. PubMed ID: 22044943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Developmental depression of glutamate neurotransmission by chronic low-level activation of NMDA receptors.
    Shi J; Aamodt SM; Townsend M; Constantine-Paton M
    J Neurosci; 2001 Aug; 21(16):6233-44. PubMed ID: 11487646
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synaptic NMDA receptor activity at resting membrane potentials.
    Chiu DN; Carter BC
    Front Cell Neurosci; 2022; 16():916626. PubMed ID: 35928574
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Channel-mediated astrocytic glutamate release via Bestrophin-1 targets synaptic NMDARs.
    Han KS; Woo J; Park H; Yoon BJ; Choi S; Lee CJ
    Mol Brain; 2013 Jan; 6():4. PubMed ID: 23324492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.