These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38660932)

  • 1. Coordination Behavior of a Confined Ionic Liquid in Carbon Nanotubes from Molecular Dynamics Simulations.
    Dick L; Buchmüller K; Kirchner B
    J Phys Chem B; 2024 May; 128(18):4472-4484. PubMed ID: 38660932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CONAN─Novel Tool to Create and Analyze Liquids in Confined Space.
    Dick L; Kirchner B
    J Chem Inf Model; 2023 Nov; 63(21):6706-6716. PubMed ID: 37907068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular insights into the nanoconfinement effect on the structure and dynamics of ionic liquids in carbon nanotubes.
    Liu HQ; Wang YL; Li B
    Phys Chem Chem Phys; 2024 May; 26(20):14691-14704. PubMed ID: 38716569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoporous carbon supercapacitors in an ionic liquid: a computer simulation study.
    Shim Y; Kim HJ
    ACS Nano; 2010 Apr; 4(4):2345-55. PubMed ID: 20359243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes.
    Shao Q; Huang L; Zhou J; Lu L; Zhang L; Lu X; Jiang S; Gubbins KE; Shen W
    Phys Chem Chem Phys; 2008 Apr; 10(14):1896-906. PubMed ID: 18368182
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracing the origin of heterogeneities in the local structure and very sluggish dynamics of [Cho][Gly] ionic liquid confined between rutile and graphite slit nanopores: A MD study.
    Khorrami F; Kowsari MH
    J Chem Phys; 2022 Jun; 156(21):214701. PubMed ID: 35676158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple AIMD approach to derive atomic charges for condensed phase simulation of ionic liquids.
    Zhang Y; Maginn EJ
    J Phys Chem B; 2012 Aug; 116(33):10036-48. PubMed ID: 22852554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular simulations of CO2 and H2 sorption into ionic liquid 1-n-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide ([hmim][Tf2N]) confined in carbon nanotubes.
    Shi W; Sorescu DC
    J Phys Chem B; 2010 Nov; 114(46):15029-41. PubMed ID: 21047100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of confined water inside carbon nanotubes based on studying tetrahedral order parameters.
    Srivastava A; Abedrabbo S; Hassan J; Homouz D
    Sci Rep; 2024 Jul; 14(1):15480. PubMed ID: 38969700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of thermodynamics, and structural, dynamical, and electrical properties of polyoxometalate ionic liquid confined into carbon nanotubes during the melting process using molecular dynamics simulation.
    Khalilzadeh Z; Abbaspour M; Zonoz FM
    RSC Adv; 2022 Dec; 13(1):624-631. PubMed ID: 36605668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale carbon greatly enhances mobility of a highly viscous ionic liquid.
    Chaban VV; Prezhdo OV
    ACS Nano; 2014 Aug; 8(8):8190-7. PubMed ID: 25110230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductivity of Ionic Liquids In the Bulk and during Infiltration in Nanopores.
    Dong Y; Steinhart M; Butt HJ; Floudas G
    J Phys Chem B; 2023 Aug; 127(31):6958-6968. PubMed ID: 37499259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Water on Structure, Dynamics, and Electrostatics of Hydrophilic and Hydrophobic Ionic Liquids in Charged and Hydrophilic Confinement between Mica Surfaces.
    Han M; Espinosa-Marzal RM
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33465-33477. PubMed ID: 31408307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen Bond Dynamics and Phase Transitions of Water inside Carbon Nanotubes.
    Srivastava A; Hassan J; Homouz D
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large Variations in the Composition of Ionic Liquid-Solvent Mixtures in Nanoscale Confinement.
    Fang A; Smolyanitsky A
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27243-27250. PubMed ID: 31287650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MD simulations of the formation of stable clusters in mixtures of alkaline salts and imidazolium-based ionic liquids.
    Méndez-Morales T; Carrete J; Bouzón-Capelo S; Pérez-Rodríguez M; Cabeza Ó; Gallego LJ; Varela LM
    J Phys Chem B; 2013 Mar; 117(11):3207-20. PubMed ID: 23480174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics simulations of the structure and single-particle dynamics of mixtures of divalent salts and ionic liquids.
    Gómez-González V; Docampo-Álvarez B; Cabeza O; Fedorov M; Lynden-Bell RM; Gallego LJ; Varela LM
    J Chem Phys; 2015 Sep; 143(12):124507. PubMed ID: 26429024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous dynamics of ionic liquids in confined films with varied film thickness.
    Wang YL; Lu ZY; Laaksonen A
    Phys Chem Chem Phys; 2014 Oct; 16(38):20731-40. PubMed ID: 25162673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Confinement-enhanced Li
    Hessling J; Lange M; Schönhoff M
    Phys Chem Chem Phys; 2023 Sep; 25(35):23510-23518. PubMed ID: 37646481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of the structure of the graphene-ionic liquid/alkali salt mixtures interface.
    Méndez-Morales T; Carrete J; Pérez-Rodríguez M; Cabeza Ó; Gallego LJ; Lynden-Bell RM; Varela LM
    Phys Chem Chem Phys; 2014 Jul; 16(26):13271-8. PubMed ID: 24871696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.