BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38660938)

  • 1. Unprecedented Approach of Fabrication and Analysis of a Bioactive PDMS/Hydroxyapatite/Graphene Nanocomposite Scaffold with a Vascular Channel to Combat Carcinogenesis.
    Ayyanar C; Rakshit S; Sarkar K; Pramanik S
    ACS Appl Bio Mater; 2024 May; 7(5):3388-3402. PubMed ID: 38660938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study.
    Mahdavi R; Belgheisi G; Haghbin-Nazarpak M; Omidi M; Khojasteh A; Solati-Hashjin M
    J Mater Sci Mater Med; 2020 Oct; 31(11):97. PubMed ID: 33135110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Preparation of elastic porous cell scaffold fabricated with combined polydimethylsiloxane (PDMS) and hydroxyapatite (HA)].
    Yang Y; Lan D; Huang Y; Li Y; Wang Y; Sun L; Fan Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Jun; 31(3):625-31. PubMed ID: 25219247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: Combined the sol-gel method with 3D plotting technique.
    Dong Y; Liang J; Cui Y; Xu S; Zhao N
    Carbohydr Polym; 2018 Oct; 197():183-193. PubMed ID: 30007604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RGD-bearing peptide-amphiphile-hydroxyapatite nanocomposite bone scaffold: an in vitro study.
    Çakmak S; Çakmak AS; Gümüşderelioğlu M
    Biomed Mater; 2013 Aug; 8(4):045014. PubMed ID: 23860136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HA/MgO nanocrystal-based hybrid hydrogel with high mechanical strength and osteoinductive potential for bone reconstruction in diabetic rats.
    Chen R; Chen HB; Xue PP; Yang WG; Luo LZ; Tong MQ; Zhong B; Xu HL; Zhao YZ; Yuan JD
    J Mater Chem B; 2021 Jan; 9(4):1107-1122. PubMed ID: 33427267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of hydroxyapatite/hydrophilic graphene composites and their modulation to cell behavior toward bone reconstruction engineering.
    Wang P; Yu T; Lv Q; Li S; Ma X; Yang G; Xu D; Liu X; Wang G; Chen Z; Xing SC
    Colloids Surf B Biointerfaces; 2019 Jan; 173():512-520. PubMed ID: 30340179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering.
    Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC
    Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of hydroxyapatite fillers on the mechanical properties and osteogenesis capacity of bio-based polyurethane composite scaffolds.
    Du J; Zuo Y; Lin L; Huang D; Niu L; Wei Y; Wang K; Lin Q; Zou Q; Li Y
    J Mech Behav Biomed Mater; 2018 Dec; 88():150-159. PubMed ID: 30172080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-infective efficacy, cytocompatibility and biocompatibility of a 3D-printed osteoconductive composite scaffold functionalized with quaternized chitosan.
    Yang Y; Yang S; Wang Y; Yu Z; Ao H; Zhang H; Qin L; Guillaume O; Eglin D; Richards RG; Tang T
    Acta Biomater; 2016 Dec; 46():112-128. PubMed ID: 27686039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically Porous Hydroxyapatite Hybrid Scaffold Incorporated with Reduced Graphene Oxide for Rapid Bone Ingrowth and Repair.
    Zhou K; Yu P; Shi X; Ling T; Zeng W; Chen A; Yang W; Zhou Z
    ACS Nano; 2019 Aug; 13(8):9595-9606. PubMed ID: 31381856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique.
    Nahanmoghadam A; Asemani M; Goodarzi V; Ebrahimi-Barough S
    J Biomed Mater Res A; 2021 Jun; 109(6):981-993. PubMed ID: 33448637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration.
    Samadikuchaksaraei A; Gholipourmalekabadi M; Erfani Ezadyar E; Azami M; Mozafari M; Johari B; Kargozar S; Jameie SB; Korourian A; Seifalian AM
    J Biomed Mater Res A; 2016 Aug; 104(8):2001-10. PubMed ID: 27027855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel calcified gum Arabic porous nano-composite scaffold for bone tissue regeneration.
    Hadavi M; Hasannia S; Faghihi S; Mashayekhi F; Zadeh HH; Mostofi SB
    Biochem Biophys Res Commun; 2017 Jul; 488(4):671-678. PubMed ID: 28302485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength.
    Maji K; Dasgupta S; Kundu B; Bissoyi A
    J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study on cytotoxicity and genotoxicity of the hydroxyapatite-bioactive glass and fluorapatite-bioactive glass nanocomposite foams as tissue scaffold for bone repair.
    Seyedmajidi S; Seyedmajidi M; Zabihi E; Hajian-Tilaki K
    J Biomed Mater Res A; 2018 Oct; 106(10):2605-2612. PubMed ID: 29896905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun Yarn Reinforced NanoHA Composite Matrix as a Potential Bone Substitute for Enhanced Regeneration of Segmental Defects.
    Anitha A; Joseph J; Menon D; Nair SV; Nair MB
    Tissue Eng Part A; 2017 Apr; 23(7-8):345-358. PubMed ID: 28093043
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.