BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38661032)

  • 1. CDK9 inhibition activates innate immune response through viral mimicry.
    Yalala S; Gondane A; Poulose N; Liang J; Mills IG; Itkonen HM
    FASEB J; 2024 Apr; 38(8):e23628. PubMed ID: 38661032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of O-GlcNAc Transferase Renders Prostate Cancer Cells Dependent on CDK9.
    Itkonen HM; Poulose N; Steele RE; Martin SES; Levine ZG; Duveau DY; Carelli R; Singh R; Urbanucci A; Loda M; Thomas CJ; Mills IG; Walker S
    Mol Cancer Res; 2020 Oct; 18(10):1512-1521. PubMed ID: 32611550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of CDK9 activity compromises global splicing in prostate cancer cells.
    Hu Q; Poulose N; Girmay S; Helevä A; Doultsinos D; Gondane A; Steele RE; Liu X; Loda M; Liu S; Tang DG; Mills IG; Itkonen HM
    RNA Biol; 2021 Nov; 18(sup2):722-729. PubMed ID: 34592899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases.
    Yang J; Zhao Y; Kalita M; Li X; Jamaluddin M; Tian B; Edeh CB; Wiktorowicz JE; Kudlicki A; Brasier AR
    Mol Cell Proteomics; 2015 Oct; 14(10):2701-21. PubMed ID: 26209609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CDK9-dependent transcriptional elongation in the innate interferon-stimulated gene response to respiratory syncytial virus infection in airway epithelial cells.
    Tian B; Zhao Y; Kalita M; Edeh CB; Paessler S; Casola A; Teng MN; Garofalo RP; Brasier AR
    J Virol; 2013 Jun; 87(12):7075-92. PubMed ID: 23596302
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CDK9 Inhibition Induces a Metabolic Switch that Renders Prostate Cancer Cells Dependent on Fatty Acid Oxidation.
    Itkonen HM; Poulose N; Walker S; Mills IG
    Neoplasia; 2019 Jul; 21(7):713-720. PubMed ID: 31151054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclin-Dependent Kinase-9 Is a Therapeutic Target in MYC-Expressing Diffuse Large B-Cell Lymphoma.
    Hashiguchi T; Bruss N; Best S; Lam V; Danilova O; Paiva CJ; Wolf J; Gilbert EW; Okada CY; Kaur P; Drew L; Cidado J; Hurlin P; Danilov AV
    Mol Cancer Ther; 2019 Sep; 18(9):1520-1532. PubMed ID: 31243099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of molecular and cellular functions of the cyclin-dependent kinase CDK9 using a novel specific inhibitor.
    Albert TK; Rigault C; Eickhoff J; Baumgart K; Antrecht C; Klebl B; Mittler G; Meisterernst M
    Br J Pharmacol; 2014 Jan; 171(1):55-68. PubMed ID: 24102143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A kinase inhibitor screen identifies a dual cdc7/CDK9 inhibitor to sensitise triple-negative breast cancer to EGFR-targeted therapy.
    McLaughlin RP; He J; van der Noord VE; Redel J; Foekens JA; Martens JWM; Smid M; Zhang Y; van de Water B
    Breast Cancer Res; 2019 Jul; 21(1):77. PubMed ID: 31262335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discovery of Small-Molecule Degraders of the CDK9-Cyclin T1 Complex for Targeting Transcriptional Addiction in Prostate Cancer.
    Li J; Liu T; Song Y; Wang M; Liu L; Zhu H; Li Q; Lin J; Jiang H; Chen K; Zhao K; Wang M; Zhou H; Lin H; Luo C
    J Med Chem; 2022 Aug; 65(16):11034-11057. PubMed ID: 35925880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O-GlcNAc transferase couples MRE11 to transcriptionally active chromatin to suppress DNA damage.
    Gondane A; Girmay S; Helevä A; Pallasaho S; Loda M; Itkonen HM
    J Biomed Sci; 2022 Feb; 29(1):13. PubMed ID: 35164752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Systematic Kinase Inhibitor Profiling Identifies CDK9 as a Synthetic Lethal Target in NUT Midline Carcinoma.
    Brägelmann J; Dammert MA; Dietlein F; Heuckmann JM; Choidas A; Böhm S; Richters A; Basu D; Tischler V; Lorenz C; Habenberger P; Fang Z; Ortiz-Cuaran S; Leenders F; Eickhoff J; Koch U; Getlik M; Termathe M; Sallouh M; Greff Z; Varga Z; Balke-Want H; French CA; Peifer M; Reinhardt HC; Örfi L; Kéri G; Ansén S; Heukamp LC; Büttner R; Rauh D; Klebl BM; Thomas RK; Sos ML
    Cell Rep; 2017 Sep; 20(12):2833-2845. PubMed ID: 28930680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. O-GlcNAc transferase maintains metabolic homeostasis in response to CDK9 inhibition.
    Gondane A; Poulose N; Walker S; Mills IG; Itkonen HM
    Glycobiology; 2022 Aug; 32(9):751-759. PubMed ID: 35708495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeting CDK9 Reactivates Epigenetically Silenced Genes in Cancer.
    Zhang H; Pandey S; Travers M; Sun H; Morton G; Madzo J; Chung W; Khowsathit J; Perez-Leal O; Barrero CA; Merali C; Okamoto Y; Sato T; Pan J; Garriga J; Bhanu NV; Simithy J; Patel B; Huang J; Raynal NJ; Garcia BA; Jacobson MA; Kadoch C; Merali S; Zhang Y; Childers W; Abou-Gharbia M; Karanicolas J; Baylin SB; Zahnow CA; Jelinek J; Graña X; Issa JJ
    Cell; 2018 Nov; 175(5):1244-1258.e26. PubMed ID: 30454645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclin-dependent kinase 9 promotes cervical cancer development via AKT2/p53 pathway.
    Xu J; Xu S; Fang Y; Chen T; Xie X; Lu W
    IUBMB Life; 2019 Mar; 71(3):347-356. PubMed ID: 30536701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compensatory induction of MYC expression by sustained CDK9 inhibition via a BRD4-dependent mechanism.
    Lu H; Xue Y; Yu GK; Arias C; Lin J; Fong S; Faure M; Weisburd B; Ji X; Mercier A; Sutton J; Luo K; Gao Z; Zhou Q
    Elife; 2015 Jun; 4():e06535. PubMed ID: 26083714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The novel CDK9 inhibitor, XPW1, alone and in combination with BRD4 inhibitor JQ1, for the treatment of clear cell renal cell carcinoma.
    Kuang Z; Guo K; Cao Y; Jiang M; Wang C; Wu Q; Hu G; Ao M; Huang M; Qin J; Zhao T; Lu S; Sun C; Li M; Wu T; Liu W; Fang M
    Br J Cancer; 2023 Dec; 129(12):1915-1929. PubMed ID: 37884683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavopiridol induces phosphorylation of AKT in a human glioblastoma cell line, in contrast to siRNA-mediated silencing of Cdk9: Implications for drug design and development.
    Caracciolo V; Laurenti G; Romano G; Carnevale V; Cimini AM; Crozier-Fitzgerald C; Gentile Warschauer E; Russo G; Giordano A
    Cell Cycle; 2012 Mar; 11(6):1202-16. PubMed ID: 22391209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorylation of the androgen receptor at Ser81 is co-sustained by CDK1 and CDK9 and leads to AR-mediated transactivation in prostate cancer.
    Gao X; Liang J; Wang L; Zhang Z; Yuan P; Wang J; Gao Y; Ma F; Calagua C; Ye H; Voznesensky O; Wang S; Wang T; Liu J; Chen S; Liu X
    Mol Oncol; 2021 Jul; 15(7):1901-1920. PubMed ID: 33932081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting CDK9: a promising therapeutic opportunity in prostate cancer.
    Rahaman MH; Kumarasiri M; Mekonnen LB; Yu M; Diab S; Albrecht H; Milne RW; Wang S
    Endocr Relat Cancer; 2016 Dec; 23(12):T211-T226. PubMed ID: 27582311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.