BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38661191)

  • 21. Target Self-Enhanced Selectivity in Metal-Specific DNAzymes.
    Huang PJ; de Rochambeau D; Sleiman HF; Liu J
    Angew Chem Int Ed Engl; 2020 Feb; 59(9):3573-3577. PubMed ID: 31867832
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A High-Throughput Kinetic Assay for RNA-Cleaving Deoxyribozymes.
    Eriksson J; Helmfors H; Langel Ü
    PLoS One; 2015; 10(8):e0135984. PubMed ID: 26309222
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selection and Characterization of an RNA-Cleaving DNAzyme Activated by Legionella pneumophila.
    Rothenbroker M; McConnell EM; Gu J; Urbanus ML; Samani SE; Ensminger AW; Filipe CDM; Li Y
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4782-4788. PubMed ID: 33188548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A new and efficient DNA enzyme for the sequence-specific cleavage of RNA.
    Feldman AR; Sen D
    J Mol Biol; 2001 Oct; 313(2):283-94. PubMed ID: 11800557
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Efficient Lanthanide-Dependent DNAzyme Cleaving 2'-5'-Linked RNA.
    Zhou W; Ding J; Liu J
    Chembiochem; 2016 May; 17(10):890-4. PubMed ID: 26957420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards DNA Nanomachines for Cancer Treatment: Achieving Selective and Efficient Cleavage of Folded RNA.
    Nedorezova DD; Fakhardo AF; Nemirich DV; Bryushkova EA; Kolpashchikov DM
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4654-4658. PubMed ID: 30693619
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemically modified oligonucleotides with efficient RNase H response.
    Vester B; Boel AM; Lobedanz S; Babu BR; Raunkjaer M; Lindegaard D; Raunak ; Hrdlicka PJ; Højland T; Sharma PK; Kumar S; Nielsen P; Wengel J
    Bioorg Med Chem Lett; 2008 Apr; 18(7):2296-300. PubMed ID: 18356048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient RNA-cleaving DNA enzyme can specifically target the 5'-untranslated region of severe acute respiratory syndrome associated coronavirus (SARS-CoV).
    Wu S; Xu J; Liu J; Yan X; Zhu X; Xiao G; Sun L; Tien P
    J Gene Med; 2007 Dec; 9(12):1080-6. PubMed ID: 17966113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Site-specific cleavage of mutant ABL mRNA by DNAzyme is facilitated by peptide nucleic acid binding to RNA substrate.
    Kim JE; Yoon S; Mok H; Jung W; Kim DE
    FEBS Lett; 2012 Nov; 586(21):3865-9. PubMed ID: 23010596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of a DNA catalyst.
    Ponce-Salvatierra A; Wawrzyniak-Turek K; Steuerwald U; Höbartner C; Pena V
    Nature; 2016 Jan; 529(7585):231-4. PubMed ID: 26735012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and Optimization of a Deoxyribozyme with a Short Left Binding Arm.
    Wang Y; Yu H
    Methods Mol Biol; 2021; 2167():79-89. PubMed ID: 32712916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A general strategy for effector-mediated control of RNA-cleaving ribozymes and DNA enzymes.
    Wang DY; Lai BH; Sen D
    J Mol Biol; 2002 Apr; 318(1):33-43. PubMed ID: 12054766
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational evolution of Cd2+-specific DNAzymes with phosphorothioate modified cleavage junction and Cd2+ sensing.
    Huang PJ; Liu J
    Nucleic Acids Res; 2015 Jul; 43(12):6125-33. PubMed ID: 25990730
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of mixed-backbone oligonucleotides on target binding affinity and target cleaving specificity and selectivity by Escherichia coli RNase H.
    Shen LX; Kandimalla ER; Agrawal S
    Bioorg Med Chem; 1998 Oct; 6(10):1695-705. PubMed ID: 9839001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the function of nucleotides in the catalytic cores of the 8-17 and 10-23 DNAzymes by abasic nucleotide and C3 spacer substitutions.
    Wang B; Cao L; Chiuman W; Li Y; Xi Z
    Biochemistry; 2010 Sep; 49(35):7553-62. PubMed ID: 20698496
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Sensitive RNA-Cleaving DNAzyme Sensors from Surface-to-Surface Product Enrichment.
    Samani SE; Chang D; McConnell EM; Rothenbroker M; Filipe CDM; Li Y
    Chembiochem; 2020 Mar; 21(5):632-637. PubMed ID: 31544309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescence Assay for Ribonuclease H Based on Nonlabeled Substrate and DNAzyme Assisted Cascade Amplification.
    Wang L; Zhou H; Liu B; Zhao C; Fan J; Wang W; Tong C
    Anal Chem; 2017 Oct; 89(20):11014-11020. PubMed ID: 28911227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimisation of the 10-23 DNAzyme-substrate pairing interactions enhanced RNA cleavage activity at purine-cytosine target sites.
    Cairns MJ; King A; Sun LQ
    Nucleic Acids Res; 2003 Jun; 31(11):2883-9. PubMed ID: 12771215
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A general approach for the use of oligonucleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymes.
    Wang DY; Lai BH; Feldman AR; Sen D
    Nucleic Acids Res; 2002 Apr; 30(8):1735-42. PubMed ID: 11937626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DNAzymeBuilder, a web application for in situ generation of RNA/DNA-cleaving deoxyribozymes.
    Mohammadi-Arani R; Javadi-Zarnaghi F; Boccaletto P; Bujnicki JM; Ponce-Salvatierra A
    Nucleic Acids Res; 2022 Jul; 50(W1):W261-W265. PubMed ID: 35446426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.