These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 38661191)

  • 41. DNAzymeBuilder, a web application for in situ generation of RNA/DNA-cleaving deoxyribozymes.
    Mohammadi-Arani R; Javadi-Zarnaghi F; Boccaletto P; Bujnicki JM; Ponce-Salvatierra A
    Nucleic Acids Res; 2022 Jul; 50(W1):W261-W265. PubMed ID: 35446426
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Target-site selection for the 10-23 DNAzyme.
    Cairns MJ; Sun LQ
    Methods Mol Biol; 2004; 252():267-77. PubMed ID: 15017056
    [TBL] [Abstract][Full Text] [Related]  

  • 43. RNA cleaving '10-23' DNAzymes with enhanced stability and activity.
    Schubert S; Gül DC; Grunert HP; Zeichhardt H; Erdmann VA; Kurreck J
    Nucleic Acids Res; 2003 Oct; 31(20):5982-92. PubMed ID: 14530446
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generation of DNAzyme in Bacterial Cells by a Bacterial Retron System.
    Liu J; Cui L; Shi X; Yan J; Wang Y; Ni Y; He J; Wang X
    ACS Synth Biol; 2024 Jan; 13(1):300-309. PubMed ID: 38171507
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A post-labeling approach for the characterization and quantification of RNA modifications based on site-directed cleavage by DNAzymes.
    Meusburger M; Hengesbach M; Helm M
    Methods Mol Biol; 2011; 718():259-70. PubMed ID: 21370054
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sequence-specific cleavage of hepatitis C virus RNA by DNAzymes: inhibition of viral RNA translation and replication.
    Roy S; Gupta N; Subramanian N; Mondal T; Banerjea AC; Das S
    J Gen Virol; 2008 Jul; 89(Pt 7):1579-1586. PubMed ID: 18559927
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluating the Catalytic Potential of a General RNA-Cleaving FANA Enzyme.
    Wang Y; Vorperian A; Shehabat M; Chaput JC
    Chembiochem; 2020 Apr; 21(7):1001-1006. PubMed ID: 31680396
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Misfolding of a DNAzyme for ultrahigh sodium selectivity over potassium.
    He Y; Chen D; Huang PJ; Zhou Y; Ma L; Xu K; Yang R; Liu J
    Nucleic Acids Res; 2018 Nov; 46(19):10262-10271. PubMed ID: 30215808
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evidence for the metal-cofactor independence of an RNA phosphodiester-cleaving DNA enzyme.
    Geyer CR; Sen D
    Chem Biol; 1997 Aug; 4(8):579-93. PubMed ID: 9281526
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Developing fluorogenic RNA-cleaving DNAzymes for biosensing applications.
    Ali MM; Aguirre SD; Mok WW; Li Y
    Methods Mol Biol; 2012; 848():395-418. PubMed ID: 22315083
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A new heavy lanthanide-dependent DNAzyme displaying strong metal cooperativity and unrescuable phosphorothioate effect.
    Huang PJ; Vazin M; Matuszek Ż; Liu J
    Nucleic Acids Res; 2015 Jan; 43(1):461-9. PubMed ID: 25488814
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancement of deoxyribozyme activity by cationic copolymers.
    Gao J; Shimada N; Maruyama A
    Biomater Sci; 2015 Feb; 3(2):308-16. PubMed ID: 26218121
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA-Cleaving Deoxyribozymes Differentiate Methylated Cytidine Isomers in RNA.
    Liaqat A; Sednev MV; Stiller C; Höbartner C
    Angew Chem Int Ed Engl; 2021 Aug; 60(35):19058-19062. PubMed ID: 34185947
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward the combinatorial selection of chemically modified DNAzyme RNase A mimics active against all-RNA substrates.
    Hollenstein M; Hipolito CJ; Lam CH; Perrin DM
    ACS Comb Sci; 2013 Apr; 15(4):174-82. PubMed ID: 23485334
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sharp Switching of DNAzyme Activity through the Formation of a Cu
    Takezawa Y; Hu L; Nakama T; Shionoya M
    Angew Chem Int Ed Engl; 2020 Nov; 59(48):21488-21492. PubMed ID: 32777155
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sequence Mutation and Structural Alteration Transform a Noncatalytic DNA Sequence into an Efficient RNA-Cleaving DNAzyme.
    Chan L; Tram K; Gysbers R; Gu J; Li Y
    J Mol Evol; 2015 Dec; 81(5-6):245-53. PubMed ID: 26530076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro selection of RNA-cleaving DNAzymes for bacterial detection.
    Zhang W; Feng Q; Chang D; Tram K; Li Y
    Methods; 2016 Aug; 106():66-75. PubMed ID: 27017912
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sequence-specific cleavage of RNA in the absence of divalent metal ions by a DNAzyme incorporating imidazolyl and amino functionalities.
    Sidorov AV; Grasby JA; Williams DM
    Nucleic Acids Res; 2004; 32(4):1591-601. PubMed ID: 15004246
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From general base to general acid catalysis in a sodium-specific DNAzyme by a guanine-to-adenine mutation.
    Ma L; Kartik S; Liu B; Liu J
    Nucleic Acids Res; 2019 Sep; 47(15):8154-8162. PubMed ID: 31276580
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A DNAzyme requiring two different metal ions at two distinct sites.
    Zhou W; Zhang Y; Huang PJ; Ding J; Liu J
    Nucleic Acids Res; 2016 Jan; 44(1):354-63. PubMed ID: 26657636
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.