These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 38661200)
1. Formation of a two-dimensional helical square tube ice in hydrophobic nanoslit using the TIP5P water model. Li J; Zhu C; Zhao W; Gao Y; Bai J; Jiang J; Zeng XC J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38661200 [TBL] [Abstract][Full Text] [Related]
2. First-Principles Molecular Dynamics Simulations of the Spontaneous Freezing Transition of 2D Water in a Nanoslit. Jiang J; Gao Y; Zhu W; Liu Y; Zhu C; Francisco JS; Zeng XC J Am Chem Soc; 2021 Jun; 143(21):8177-8183. PubMed ID: 34008407 [TBL] [Abstract][Full Text] [Related]
4. Evidence of Formation of 1-10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries. Liu Y; Jiang J; Pu Y; Francisco JS; Zeng XC ACS Nano; 2023 Apr; 17(7):6922-6931. PubMed ID: 36940168 [TBL] [Abstract][Full Text] [Related]
5. Replica exchange MD simulations of two-dimensional water in graphene nanocapillaries: rhombic versus square structures, proton ordering, and phase transitions. Li S; Schmidt B Phys Chem Chem Phys; 2019 Aug; 21(32):17640-17654. PubMed ID: 31364628 [TBL] [Abstract][Full Text] [Related]
6. Phase diagram of water in carbon nanotubes. Takaiwa D; Hatano I; Koga K; Tanaka H Proc Natl Acad Sci U S A; 2008 Jan; 105(1):39-43. PubMed ID: 18162549 [TBL] [Abstract][Full Text] [Related]
7. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation. Javadian S; Taghavi F; Yari F; Hashemianzadeh SM J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156 [TBL] [Abstract][Full Text] [Related]
8. Temperature-pressure phase diagram of confined monolayer water/ice at first-principles accuracy with a machine-learning force field. Lin B; Jiang J; Zeng XC; Li L Nat Commun; 2023 Jul; 14(1):4110. PubMed ID: 37433823 [TBL] [Abstract][Full Text] [Related]
9. Two-dimensional interlocked pentagonal bilayer ice: how do water molecules form a hydrogen bonding network? Zhu W; Zhao WH; Wang L; Yin D; Jia M; Yang J; Zeng XC; Yuan LF Phys Chem Chem Phys; 2016 Jun; 18(21):14216-21. PubMed ID: 27063210 [TBL] [Abstract][Full Text] [Related]
10. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates. Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018 [TBL] [Abstract][Full Text] [Related]
11. Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure. Bai J; Zeng XC Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21240-5. PubMed ID: 23236178 [TBL] [Abstract][Full Text] [Related]
12. Puckered Zigzag Monolayer Ice: Does a Confined Flat Four-Coordinated Monolayer Ice Always Have a Corresponding Puckered Phase? Wei L; Bai Q; Li X; Liu Z; Li C; Cui Y; Shen L; Zhu C; Fang W J Phys Chem Lett; 2023 Oct; 14(39):8890-8895. PubMed ID: 37767947 [TBL] [Abstract][Full Text] [Related]
13. Insights into Water Permeation through hBN Nanocapillaries by Ab Initio Machine Learning Molecular Dynamics Simulations. Ghorbanfekr H; Behler J; Peeters FM J Phys Chem Lett; 2020 Sep; 11(17):7363-7370. PubMed ID: 32787306 [TBL] [Abstract][Full Text] [Related]
14. Low-Dimensional Confined Ice Has the Electronic Signature of Liquid Water. Yun Y; Khaliullin RZ; Jung Y J Phys Chem Lett; 2019 Apr; 10(8):2008-2016. PubMed ID: 30946585 [TBL] [Abstract][Full Text] [Related]
15. AB-stacked square-like bilayer ice in graphene nanocapillaries. Zhu Y; Wang F; Bai J; Zeng XC; Wu H Phys Chem Chem Phys; 2016 Aug; 18(32):22039-46. PubMed ID: 27468430 [TBL] [Abstract][Full Text] [Related]
16. Buckling failure of square ice-nanotube arrays constrained in graphene nanocapillaries. Zhu Y; Wang F; Wu H J Chem Phys; 2016 Aug; 145(5):054704. PubMed ID: 27497569 [TBL] [Abstract][Full Text] [Related]
17. Why different water models predict different structures under 2D confinement. Dix J; Lue L; Carbone P J Comput Chem; 2018 Sep; 39(25):2051-2059. PubMed ID: 30226923 [TBL] [Abstract][Full Text] [Related]
18. Phase transitions of ordered ice in graphene nanocapillaries and carbon nanotubes. Raju M; van Duin A; Ihme M Sci Rep; 2018 Mar; 8(1):3851. PubMed ID: 29497132 [TBL] [Abstract][Full Text] [Related]
19. Square ice in graphene nanocapillaries. Algara-Siller G; Lehtinen O; Wang FC; Nair RR; Kaiser U; Wu HA; Geim AK; Grigorieva IV Nature; 2015 Mar; 519(7544):443-5. PubMed ID: 25810206 [TBL] [Abstract][Full Text] [Related]
20. Computational Prediction of Novel Ice Phases: A Perspective. Zhu C; Gao Y; Zhu W; Liu Y; Francisco JS; Zeng XC J Phys Chem Lett; 2020 Sep; 11(17):7449-7461. PubMed ID: 32787287 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]