These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38661240)

  • 1. A mountaineering strategy to excited states: Accurate vertical transition energies and benchmarks for substituted benzenes.
    Loos PF; Jacquemin D
    J Comput Chem; 2024 Aug; 45(21):1791-1805. PubMed ID: 38661240
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Bicyclic Systems.
    Loos PF; Jacquemin D
    J Phys Chem A; 2021 Dec; 125(47):10174-10188. PubMed ID: 34792354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Medium Sized Molecules.
    Loos PF; Lipparini F; Boggio-Pasqua M; Scemama A; Jacquemin D
    J Chem Theory Comput; 2020 Mar; 16(3):1711-1741. PubMed ID: 31986042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Mountaineering Strategy to Excited States: Highly Accurate Reference Energies and Benchmarks.
    Loos PF; Scemama A; Blondel A; Garniron Y; Caffarel M; Jacquemin D
    J Chem Theory Comput; 2018 Aug; 14(8):4360-4379. PubMed ID: 29966098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reference Energies for Intramolecular Charge-Transfer Excitations.
    Loos PF; Comin M; Blase X; Jacquemin D
    J Chem Theory Comput; 2021 Jun; 17(6):3666-3686. PubMed ID: 33955742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mountaineering Strategy to Excited States: Highly Accurate Energies and Benchmarks for Exotic Molecules and Radicals.
    Loos PF; Scemama A; Boggio-Pasqua M; Jacquemin D
    J Chem Theory Comput; 2020 Jun; 16(6):3720-3736. PubMed ID: 32379442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A New Benchmark Set for Excitation Energy of Charge Transfer States: Systematic Investigation of Coupled Cluster Type Methods.
    Kozma B; Tajti A; Demoulin B; Izsák R; Nooijen M; Szalay PG
    J Chem Theory Comput; 2020 Jul; 16(7):4213-4225. PubMed ID: 32502351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarks for Electronically Excited States: A Comparison of Noniterative and Iterative Triples Corrections in Linear Response Coupled Cluster Methods: CCSDR(3) versus CC3.
    Sauer SP; Schreiber M; Silva-Junior MR; Thiel W
    J Chem Theory Comput; 2009 Mar; 5(3):555-64. PubMed ID: 26610222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reference CC3 Excitation Energies for Organic Chromophores: Benchmarking TD-DFT, BSE/
    Knysh I; Lipparini F; Blondel A; Duchemin I; Blase X; Loos PF; Jacquemin D
    J Chem Theory Comput; 2024 Sep; ():. PubMed ID: 39237472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reference Vertical Excitation Energies for Transition Metal Compounds.
    Jacquemin D; Kossoski F; Gam F; Boggio-Pasqua M; Loos PF
    J Chem Theory Comput; 2023 Dec; 19(23):8782-8800. PubMed ID: 37965941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of Coupled Cluster Excitation Energies in Diffuse Basis Sets.
    Kánnár D; Tajti A; Szalay PG
    J Chem Theory Comput; 2017 Jan; 13(1):202-209. PubMed ID: 27959525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mountaineering Strategy to Excited States: Revising Reference Values with EOM-CC4.
    Loos PF; Lipparini F; Matthews DA; Blondel A; Jacquemin D
    J Chem Theory Comput; 2022 Jul; 18(7):4418-4427. PubMed ID: 35737466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking Coupled Cluster Methods on Valence Singlet Excited States.
    Kánnár D; Szalay PG
    J Chem Theory Comput; 2014 Sep; 10(9):3757-65. PubMed ID: 26588520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-Specific Coupled-Cluster Methods for Excited States.
    Damour Y; Scemama A; Jacquemin D; Kossoski F; Loos PF
    J Chem Theory Comput; 2024 May; 20(10):4129-4145. PubMed ID: 38749498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Comparisons between Experiment, TD-DFT, CC, and ADC for Transition Energies.
    Suellen C; Freitas RG; Loos PF; Jacquemin D
    J Chem Theory Comput; 2019 Aug; 15(8):4581-4590. PubMed ID: 31265781
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically Accurate 0-0 Energies with Not-so-Accurate Excited State Geometries.
    Loos PF; Jacquemin D
    J Chem Theory Comput; 2019 Apr; 15(4):2481-2491. PubMed ID: 30802404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking coupled cluster methods on singlet excited states of nucleobases.
    Kánnár D; Szalay PG
    J Mol Model; 2014 Nov; 20(11):2503. PubMed ID: 25394400
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Rishi V; Ravi M; Perera A; Bartlett RJ
    J Phys Chem A; 2023 Jan; 127(3):828-834. PubMed ID: 36640093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How accurate are EOM-CC4 vertical excitation energies?
    Loos PF; Matthews DA; Lipparini F; Jacquemin D
    J Chem Phys; 2021 Jun; 154(22):221103. PubMed ID: 34241206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benchmarking for perturbative triple-excitations in EE-EOM-CC methods.
    Watson TJ; Lotrich VF; Szalay PG; Perera A; Bartlett RJ
    J Phys Chem A; 2013 Mar; 117(12):2569-79. PubMed ID: 23406329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.