These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38661297)

  • 1. Surveying the Directional Transport of Water Droplets upon Impact on Metallic Topographic Gradients.
    Misiiuk K; Willmott GR; Blaikie RJ; Sommers AD; Pandian SK; Lowrey S
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38661297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directional Droplet Transport Mediated by Circular Groove Arrays. Part I: Experimental Findings.
    Liu C; Legchenkova I; Han L; Ge W; Lv C; Feng S; Bormashenko E; Liu Y
    Langmuir; 2020 Aug; 36(32):9608-9615. PubMed ID: 32787135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bouncing Regimes of Supercooled Water Droplets Impacting Superhydrophobic Surfaces with Controlled Temperature and Humidity.
    Guo C; Liu L; Yang R; Lu J; Liu S
    Langmuir; 2023 Jul; 39(29):10199-10208. PubMed ID: 37436938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directional Droplet Propulsion on Gradient Boron Nitride Nanosheet Grid Surface Lubricated with a Vapor Film below the Leidenfrost Temperature.
    Wang Y; Wang R; Zhou Y; Huang Z; Wang J; Jiang L
    ACS Nano; 2018 Dec; 12(12):11995-12003. PubMed ID: 30457835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topography-based surface tension gradients to facilitate water droplet movement on laser-etched copper substrates.
    Sommers AD; Brest TJ; Eid KF
    Langmuir; 2013 Sep; 29(38):12043-50. PubMed ID: 23971937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces.
    Delele MA; Nuyttens D; Duga AT; Ambaw A; Lebeau F; Nicolai BM; Verboven P
    Soft Matter; 2016 Sep; 12(34):7195-211. PubMed ID: 27501228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Droplet impacting on pillared hydrophobic surfaces with different solid fractions.
    Xia L; Yang Z; Chen F; Liu T; Tian Y; Zhang D
    J Colloid Interface Sci; 2024 Mar; 658():61-73. PubMed ID: 38100977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet Bouncing and Breakup during Impact on a Microgrooved Surface.
    Malla LK; Patil ND; Bhardwaj R; Neild A
    Langmuir; 2017 Sep; 33(38):9620-9631. PubMed ID: 28846429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscous droplet impingement on soft substrates.
    Lin M; Vo Q; Mitra S; Tran T
    Soft Matter; 2022 Jul; 18(29):5474-5482. PubMed ID: 35833825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spreading-splashing transition of nanofluid droplets on a smooth flat surface.
    Aksoy YT; Eneren P; Koos E; Vetrano MR
    J Colloid Interface Sci; 2022 Jan; 606(Pt 1):434-443. PubMed ID: 34411826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ricocheting Droplets Moving on Super-Repellent Surfaces.
    Pan S; Guo R; Richardson JJ; Berry JD; Besford QA; Björnmalm M; Yun G; Wu R; Lin Z; Zhong QZ; Zhou J; Sun Q; Li J; Lu Y; Dong Z; Banks MK; Xu W; Jiang J; Jiang L; Caruso F
    Adv Sci (Weinh); 2019 Nov; 6(21):1901846. PubMed ID: 31728297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steerable directional bouncing and contact time reduction of impacting droplets on superhydrophobic stepped surfaces.
    Du J; Li Y; Wu X; Min Q
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):1032-1044. PubMed ID: 36154970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survey of Micro/Nanofabricated Chemical, Topographical, and Compound Passive Wetting Gradient Surfaces.
    Lowrey S; Misiiuk K; Blaikie R; Sommers A
    Langmuir; 2022 Jan; 38(2):605-619. PubMed ID: 34498455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Splashing generation by water jet impinging on a horizontal plate.
    Qian S; Zhu DZ; Xu H
    Exp Therm Fluid Sci; 2022 Jan; 130():110518. PubMed ID: 34518737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.
    Ody T; Panth M; Sommers AD; Eid KF
    Langmuir; 2016 Jul; 32(27):6967-76. PubMed ID: 27269182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2009 Aug; 25(16):9208-18. PubMed ID: 19441842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between Wetting Hysteresis and Contact Time of a Bouncing Droplet on Hydrophobic Surfaces.
    Shen Y; Tao J; Tao H; Chen S; Pan L; Wang T
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20972-8. PubMed ID: 26331793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving superamphiphobicity by mimicking tree-branch topography.
    Ding W; Dorao CA; Fernandino M
    J Colloid Interface Sci; 2022 Apr; 611():118-128. PubMed ID: 34933190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Following or Against Topographic Wettability Gradient: Movements of Droplets on a Micropatterned Surface.
    Zhao J; Chen S
    Langmuir; 2017 May; 33(21):5328-5335. PubMed ID: 28485943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.