These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38661329)
21. The melatonin conformer space: benchmark and assessment of wave function and DFT methods for a paradigmatic biological and pharmacological molecule. Fogueri UR; Kozuch S; Karton A; Martin JM J Phys Chem A; 2013 Mar; 117(10):2269-77. PubMed ID: 23379303 [TBL] [Abstract][Full Text] [Related]
22. Performance of Effective Core Potentials for Density Functional Calculations on 3d Transition Metals. Xu X; Truhlar DG J Chem Theory Comput; 2012 Jan; 8(1):80-90. PubMed ID: 26592870 [TBL] [Abstract][Full Text] [Related]
23. Benchmark ab Initio Conformational Energies for the Proteinogenic Amino Acids through Explicitly Correlated Methods. Assessment of Density Functional Methods. Kesharwani MK; Karton A; Martin JM J Chem Theory Comput; 2016 Jan; 12(1):444-54. PubMed ID: 26653705 [TBL] [Abstract][Full Text] [Related]
24. Basis set convergence of CCSD(T) equilibrium geometries using a large and diverse set of molecular structures. Spackman PR; Jayatilaka D; Karton A J Chem Phys; 2016 Sep; 145(10):104101. PubMed ID: 27634245 [TBL] [Abstract][Full Text] [Related]
25. CHAL336 Benchmark Set: How Well Do Quantum-Chemical Methods Describe Chalcogen-Bonding Interactions? Mehta N; Fellowes T; White JM; Goerigk L J Chem Theory Comput; 2021 May; 17(5):2783-2806. PubMed ID: 33881869 [TBL] [Abstract][Full Text] [Related]
26. Assessment of the "6-31+G** + LANL2DZ" mixed basis set coupled with density functional theory methods and the effective core potential: prediction of heats of formation and ionization potentials for first-row-transition-metal complexes. Yang Y; Weaver MN; Merz KM J Phys Chem A; 2009 Sep; 113(36):9843-51. PubMed ID: 19691271 [TBL] [Abstract][Full Text] [Related]
27. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
28. Assessment of DFT for endohedral complexes' dipole moment: PNO-LCCSD-F12 as a reference method. Kozłowska J; Schwilk M; Roztoczyńska A; Bartkowiak W Phys Chem Chem Phys; 2018 Nov; 20(46):29374-29388. PubMed ID: 30451255 [TBL] [Abstract][Full Text] [Related]
29. Extrapolating MP2 and CCSD explicitly correlated correlation energies to the complete basis set limit with first and second row correlation consistent basis sets. Hill JG; Peterson KA; Knizia G; Werner HJ J Chem Phys; 2009 Nov; 131(19):194105. PubMed ID: 19929044 [TBL] [Abstract][Full Text] [Related]
30. New accurate benchmark energies for large water clusters: DFT is better than expected. Anacker T; Friedrich J J Comput Chem; 2014 Mar; 35(8):634-43. PubMed ID: 24482156 [TBL] [Abstract][Full Text] [Related]
31. Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell Metal Organic Reactions. Dohm S; Hansen A; Steinmetz M; Grimme S; Checinski MP J Chem Theory Comput; 2018 May; 14(5):2596-2608. PubMed ID: 29565586 [TBL] [Abstract][Full Text] [Related]
32. Benchmark Assessment of Density Functional Methods on Group II-VI MX (M = Zn, Cd; X = S, Se, Te) Quantum Dots. Azpiroz JM; Ugalde JM; Infante I J Chem Theory Comput; 2014 Jan; 10(1):76-89. PubMed ID: 26579893 [TBL] [Abstract][Full Text] [Related]
33. Electron Correlation or Basis Set Quality: How to Obtain Converged and Accurate NMR Shieldings for the Third-Row Elements? Rzepiela K; Kaminský J; Buczek A; Broda MA; Kupka T Molecules; 2022 Nov; 27(23):. PubMed ID: 36500321 [TBL] [Abstract][Full Text] [Related]
34. ωB97X-3c: A composite range-separated hybrid DFT method with a molecule-optimized polarized valence double-ζ basis set. Müller M; Hansen A; Grimme S J Chem Phys; 2023 Jan; 158(1):014103. PubMed ID: 36610980 [TBL] [Abstract][Full Text] [Related]
35. Accurate Calculation of Isomerization and Conformational Energies of Larger Molecules Using Explicitly Correlated Local Coupled Cluster Methods in Molpro and ORCA. Werner HJ; Hansen A J Chem Theory Comput; 2023 Oct; 19(20):7007-7030. PubMed ID: 37486154 [TBL] [Abstract][Full Text] [Related]
36. Accuracy of Effective Core Potentials and Basis Sets for Density Functional Calculations, Including Relativistic Effects, As Illustrated by Calculations on Arsenic Compounds. Xu X; Truhlar DG J Chem Theory Comput; 2011 Sep; 7(9):2766-79. PubMed ID: 26605468 [TBL] [Abstract][Full Text] [Related]
37. Pericyclic reaction benchmarks: hierarchical computations targeting CCSDT(Q)/CBS and analysis of DFT performance. Vermeeren P; Dalla Tiezza M; Wolf ME; Lahm ME; Allen WD; Schaefer HF; Hamlin TA; Bickelhaupt FM Phys Chem Chem Phys; 2022 Aug; 24(30):18028-18042. PubMed ID: 35861164 [TBL] [Abstract][Full Text] [Related]
38. Intermolecular potentials of the silane dimer calculated with Hartree-Fock theory, Møller-Plesset perturbation theory, and density functional theory. Pai CC; Li AH; Chao SD J Phys Chem A; 2007 Nov; 111(46):11922-9. PubMed ID: 17963367 [TBL] [Abstract][Full Text] [Related]
39. Correlation consistent basis sets for explicitly correlated wavefunctions: Pseudopotential-based basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements. Hill JG; Shaw RA J Chem Phys; 2021 Nov; 155(17):174113. PubMed ID: 34742216 [TBL] [Abstract][Full Text] [Related]
40. Comparison of Property-Oriented Basis Sets for the Computation of Electronic and Nuclear Relaxation Hyperpolarizabilities. Zaleśny R; Baranowska-Łączkowska A; Medveď M; Luis JM J Chem Theory Comput; 2015 Sep; 11(9):4119-28. PubMed ID: 26575907 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]