These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38661330)

  • 61. Enhanced Afterglow Performance of Persistent Luminescence Implants for Efficient Repeatable Photodynamic Therapy.
    Fan W; Lu N; Xu C; Liu Y; Lin J; Wang S; Shen Z; Yang Z; Qu J; Wang T; Chen S; Huang P; Chen X
    ACS Nano; 2017 Jun; 11(6):5864-5872. PubMed ID: 28537714
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Catalytic NIR chemiluminescence sensor with enhanced persistence and intensity for in vivo imaging.
    Chen Z; Zhang M; Ding Y; Wang K; Sun X; Lu H; Xiao Y; Cao CY; Zhang Q
    Talanta; 2024 Aug; 276():126202. PubMed ID: 38743968
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A LRET Nanoplatform Consisting of Lanthanide and Amorphous Manganese Oxide for NIR-II Luminescence Lifetime Imaging of Tumor Redox Status.
    Zhao M; Zhuang H; Zhang H; Li B; Ming J; Chen X; Chen M
    Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202209592. PubMed ID: 36175373
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Single Nanoprobe for Ratiometric Imaging and Biosensing of Hypochlorite and Glutathione in Live Cells Using Surface-Enhanced Raman Scattering.
    Wang W; Zhang L; Li L; Tian Y
    Anal Chem; 2016 Oct; 88(19):9518-9523. PubMed ID: 27599001
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Small but bright: origin of the enhanced luminescence of ultrasmall ZnGa
    Shiu WT; Yoo V; Liu Y; Chang LY; Azizivahed T; Huang Y; Ragogna PJ; Liu L
    Phys Chem Chem Phys; 2024 Jun; 26(25):17561-17568. PubMed ID: 38869486
    [TBL] [Abstract][Full Text] [Related]  

  • 66. X-ray-charged bright persistent luminescence in NaYF
    Zhuang Y; Chen D; Chen W; Zhang W; Su X; Deng R; An Z; Chen H; Xie RJ
    Light Sci Appl; 2021 Jun; 10(1):132. PubMed ID: 34162833
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Luminescence nanomaterials for biosensing applications.
    Kumar V; Bhatt D; Saruchi ; Pandey S
    Luminescence; 2023 Jul; 38(7):1011-1025. PubMed ID: 36042553
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nanocrystals for Deep-Tissue
    Yang Y; Jiang Q; Zhang F
    Chem Rev; 2024 Jan; 124(2):554-628. PubMed ID: 37991799
    [No Abstract]   [Full Text] [Related]  

  • 69. Recent advances in plasmon-enhanced luminescence for biosensing and bioimaging.
    Gao S; Zhou R; Samanta S; Qu J; Ohulchanskyy TY
    Anal Chim Acta; 2023 May; 1254():341086. PubMed ID: 37005018
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Two-Photon Excited Near-Infrared Iridium(III) Complex for Multi-signal Detection and Multimodal Imaging of Hypochlorite.
    Dai Y; Zhan Z; Chai L; Zhang L; Guo Q; Zhang K; Lv Y
    Anal Chem; 2021 Mar; 93(10):4628-4634. PubMed ID: 33656847
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Electrogenerated chemiluminescence of luminol at a boron-doped diamond electrode for the detection of hypochlorite.
    Rahmawati I; Saepudin E; Fiorani A; Einaga Y; Ivandini TA
    Analyst; 2022 Jun; 147(12):2696-2702. PubMed ID: 35608289
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging.
    Chuang YJ; Zhen Z; Zhang F; Liu F; Mishra JP; Tang W; Chen H; Huang X; Wang L; Chen X; Xie J; Pan Z
    Theranostics; 2014; 4(11):1112-22. PubMed ID: 25285164
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Bright, small sizes and hydro-dispersive NIR persistent luminescence nanoparticles modified with Si and amino groups for enhanced bioimaging.
    Fu J; Lv QY; Li YS; Song X; Zhu Q; Ren X; Cui HF
    Nanotechnology; 2023 Feb; 34(17):. PubMed ID: 36706449
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Zinc-Dithizone Complex Engineered Upconverting Nanosensors for the Detection of Hypochlorite in Living Cells.
    Mei Q; Deng W; Yisibashaer W; Jing H; Du G; Wu M; Li BN; Zhang Y
    Small; 2015 Sep; 11(35):4568-75. PubMed ID: 26150405
    [TBL] [Abstract][Full Text] [Related]  

  • 75. NIR Biosensing of Neurotransmitters in Stem Cell-Derived Neural Interface Using Advanced Core-Shell Upconversion Nanoparticles.
    Rabie H; Zhang Y; Pasquale N; Lagos MJ; Batson PE; Lee KB
    Adv Mater; 2019 Apr; 31(14):e1806991. PubMed ID: 30761616
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cr
    Xu J; Murata D; Katayama Y; Ueda J; Tanabe S
    J Mater Chem B; 2017 Aug; 5(31):6385-6393. PubMed ID: 32264455
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A 980 nm laser-activated upconverted persistent probe for NIR-to-NIR rechargeable in vivo bioimaging.
    Xue Z; Li X; Li Y; Jiang M; Ren G; Liu H; Zeng S; Hao J
    Nanoscale; 2017 Jun; 9(21):7276-7283. PubMed ID: 28524926
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties.
    Zhou J; Sun Y; Du X; Xiong L; Hu H; Li F
    Biomaterials; 2010 Apr; 31(12):3287-95. PubMed ID: 20132982
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Autofluorescence-Free Targeted Tumor Imaging Based on Luminous Nanoparticles with Composition-Dependent Size and Persistent Luminescence.
    Wang J; Ma Q; Hu XX; Liu H; Zheng W; Chen X; Yuan Q; Tan W
    ACS Nano; 2017 Aug; 11(8):8010-8017. PubMed ID: 28771315
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Bioapplications and biotechnologies of upconversion nanoparticle-based nanosensors.
    Wang C; Li X; Zhang F
    Analyst; 2016 Jun; 141(12):3601-20. PubMed ID: 26978012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.