These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 38661449)
1. Exagamglogene Autotemcel for Severe Sickle Cell Disease. Frangoul H; Locatelli F; Sharma A; Bhatia M; Mapara M; Molinari L; Wall D; Liem RI; Telfer P; Shah AJ; Cavazzana M; Corbacioglu S; Rondelli D; Meisel R; Dedeken L; Lobitz S; de Montalembert M; Steinberg MH; Walters MC; Eckrich MJ; Imren S; Bower L; Simard C; Zhou W; Xuan F; Morrow PK; Hobbs WE; Grupp SA; N Engl J Med; 2024 May; 390(18):1649-1662. PubMed ID: 38661449 [TBL] [Abstract][Full Text] [Related]
2. Exagamglogene Autotemcel for Transfusion-Dependent β-Thalassemia. Locatelli F; Lang P; Wall D; Meisel R; Corbacioglu S; Li AM; de la Fuente J; Shah AJ; Carpenter B; Kwiatkowski JL; Mapara M; Liem RI; Cappellini MD; Algeri M; Kattamis A; Sheth S; Grupp S; Handgretinger R; Kohli P; Shi D; Ross L; Bobruff Y; Simard C; Zhang L; Morrow PK; Hobbs WE; Frangoul H; N Engl J Med; 2024 May; 390(18):1663-1676. PubMed ID: 38657265 [TBL] [Abstract][Full Text] [Related]
3. CRISPR-Cas9 Editing of the Sharma A; Boelens JJ; Cancio M; Hankins JS; Bhad P; Azizy M; Lewandowski A; Zhao X; Chitnis S; Peddinti R; Zheng Y; Kapoor N; Ciceri F; Maclachlan T; Yang Y; Liu Y; Yuan J; Naumann U; Yu VWC; Stevenson SC; De Vita S; LaBelle JL N Engl J Med; 2023 Aug; 389(9):820-832. PubMed ID: 37646679 [TBL] [Abstract][Full Text] [Related]
4. CRISPR-Cas9 Gene Editing for Sickle Cell Disease and β-Thalassemia. Frangoul H; Altshuler D; Cappellini MD; Chen YS; Domm J; Eustace BK; Foell J; de la Fuente J; Grupp S; Handgretinger R; Ho TW; Kattamis A; Kernytsky A; Lekstrom-Himes J; Li AM; Locatelli F; Mapara MY; de Montalembert M; Rondelli D; Sharma A; Sheth S; Soni S; Steinberg MH; Wall D; Yen A; Corbacioglu S N Engl J Med; 2021 Jan; 384(3):252-260. PubMed ID: 33283989 [TBL] [Abstract][Full Text] [Related]
5. Infrequent Resolution of Vaso-Occlusive Crises in Routine Clinical Care Among Patients Mimicking the Exa-Cel Trial Population: A Cohort Study of Medicaid Enrollees. Mahesri M; Lee SB; Levin R; Imren S; Zhang L; Beukelman T; Titievsky L; Desai RJ Clin Pharmacol Ther; 2024 Dec; 116(6):1572-1579. PubMed ID: 39328080 [TBL] [Abstract][Full Text] [Related]
6. An evaluation of exagamglogene autotemcel for the treatment of sickle cell disease and transfusion-dependent beta-thalassaemia. Handgretinger R; Mezger M Expert Opin Biol Ther; 2024 Sep; 24(9):883-888. PubMed ID: 39222044 [TBL] [Abstract][Full Text] [Related]
7. Biologic and Clinical Efficacy of LentiGlobin for Sickle Cell Disease. Kanter J; Walters MC; Krishnamurti L; Mapara MY; Kwiatkowski JL; Rifkin-Zenenberg S; Aygun B; Kasow KA; Pierciey FJ; Bonner M; Miller A; Zhang X; Lynch J; Kim D; Ribeil JA; Asmal M; Goyal S; Thompson AA; Tisdale JF N Engl J Med; 2022 Feb; 386(7):617-628. PubMed ID: 34898139 [TBL] [Abstract][Full Text] [Related]
8. Development and IND-enabling studies of a novel Cas9 genome-edited autologous CD34 Katta V; O'Keefe K; Li Y; Mayuranathan T; Lazzarotto CR; Wood RK; Levine RM; Powers A; Mayberry K; Manquen G; Yao Y; Zhang J; Jang Y; Nimmagadda N; Dempsey EA; Lee G; Uchida N; Cheng Y; Fazio F; Lockey T; Meagher M; Sharma A; Tisdale JF; Zhou S; Yen JS; Weiss MJ; Tsai SQ Mol Ther; 2024 Oct; 32(10):3433-3452. PubMed ID: 39086133 [TBL] [Abstract][Full Text] [Related]
9. Zinc finger nuclease-mediated gene editing in hematopoietic stem cells results in reactivation of fetal hemoglobin in sickle cell disease. Lessard S; Rimmelé P; Ling H; Moran K; Vieira B; Lin YD; Rajani GM; Hong V; Reik A; Boismenu R; Hsu B; Chen M; Cockroft BM; Uchida N; Tisdale J; Alavi A; Krishnamurti L; Abedi M; Galeon I; Reiner D; Wang L; Ramezi A; Rendo P; Walters MC; Levasseur D; Peters R; Harris T; Hicks A Sci Rep; 2024 Oct; 14(1):24298. PubMed ID: 39414860 [TBL] [Abstract][Full Text] [Related]
11. Cellular function reinstitution of offspring red blood cells cloned from the sickle cell disease patient blood post CRISPR genome editing. Wen J; Tao W; Hao S; Zu Y J Hematol Oncol; 2017 Jun; 10(1):119. PubMed ID: 28610635 [TBL] [Abstract][Full Text] [Related]
12. Editorial: First Regulatory Approvals for CRISPR-Cas9 Therapeutic Gene Editing for Sickle Cell Disease and Transfusion-Dependent β-Thalassemia. Parums DV Med Sci Monit; 2024 Mar; 30():e944204. PubMed ID: 38425279 [TBL] [Abstract][Full Text] [Related]
13. Exagamglogene Autotemcel: First Approval. Hoy SM Mol Diagn Ther; 2024 Mar; 28(2):133-139. PubMed ID: 38228954 [TBL] [Abstract][Full Text] [Related]
14. Cost-Effectiveness of Lovotibeglogene Autotemcel (Lovo-Cel) Gene Therapy for Patients with Sickle Cell Disease and Recurrent Vaso-Occlusive Events in the United States. Herring WL; Gallagher ME; Shah N; Morse KC; Mladsi D; Dong OM; Chawla A; Leiding JW; Zhang L; Paramore C; Andemariam B Pharmacoeconomics; 2024 Jun; 42(6):693-714. PubMed ID: 38684631 [TBL] [Abstract][Full Text] [Related]
18. Post-Transcriptional Genetic Silencing of Esrick EB; Lehmann LE; Biffi A; Achebe M; Brendel C; Ciuculescu MF; Daley H; MacKinnon B; Morris E; Federico A; Abriss D; Boardman K; Khelladi R; Shaw K; Negre H; Negre O; Nikiforow S; Ritz J; Pai SY; London WB; Dansereau C; Heeney MM; Armant M; Manis JP; Williams DA N Engl J Med; 2021 Jan; 384(3):205-215. PubMed ID: 33283990 [TBL] [Abstract][Full Text] [Related]
19. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Ye L; Wang J; Tan Y; Beyer AI; Xie F; Muench MO; Kan YW Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10661-5. PubMed ID: 27601644 [TBL] [Abstract][Full Text] [Related]
20. Specificity of CRISPR-Cas9 Editing in Exagamglogene Autotemcel. Yen A; Zappala Z; Fine RS; Majarian TD; Sripakdeevong P; Altshuler D N Engl J Med; 2024 May; 390(18):1723-1725. PubMed ID: 38657268 [No Abstract] [Full Text] [Related] [Next] [New Search]