These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 38662173)

  • 1. Role of oxalic acid in fungal and bacterial metabolism and its biotechnological potential.
    Grąz M
    World J Microbiol Biotechnol; 2024 Apr; 40(6):178. PubMed ID: 38662173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes.
    Gadd GM
    Adv Microb Physiol; 1999; 41():47-92. PubMed ID: 10500844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxalic acid, a molecule at the crossroads of bacterial-fungal interactions.
    Palmieri F; Estoppey A; House GL; Lohberger A; Bindschedler S; Chain PSG; Junier P
    Adv Appl Microbiol; 2019; 106():49-77. PubMed ID: 30798804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of oxalate metabolism in plants for improving food quality and productivity.
    Kumar V; Irfan M; Datta A
    Phytochemistry; 2019 Feb; 158():103-109. PubMed ID: 30500595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxalate in Plants: Metabolism, Function, Regulation, and Application.
    Li P; Liu C; Luo Y; Shi H; Li Q; PinChu C; Li X; Yang J; Fan W
    J Agric Food Chem; 2022 Dec; 70(51):16037-16049. PubMed ID: 36511327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of plant protection against two oxalate-producing fungal pathogens by oxalotrophic strains of Stenotrophomonas spp.
    Marina M; Romero FM; Villarreal NM; Medina AJ; Gárriz A; Rossi FR; Martinez GA; Pieckenstain FL
    Plant Mol Biol; 2019 Aug; 100(6):659-674. PubMed ID: 31187392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fungi, bacteria and soil pH: the oxalate-carbonate pathway as a model for metabolic interaction.
    Martin G; Guggiari M; Bravo D; Zopfi J; Cailleau G; Aragno M; Job D; Verrecchia E; Junier P
    Environ Microbiol; 2012 Nov; 14(11):2960-70. PubMed ID: 22928486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel enzymatic decarboxylation of oxalic acid by the lignin peroxidase system of white-rot fungus Phanerochaete chrysosporium.
    Akamatsu Y; Ma DB; Higuchi T; Shimada M
    FEBS Lett; 1990 Aug; 269(1):261-3. PubMed ID: 2387411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxalic acid degradation in wood-rotting fungi. Searching for a new source of oxalate oxidase.
    Grąz M; Ruminowicz-Stefaniuk M; Jarosz-Wilkołazka A
    World J Microbiol Biotechnol; 2022 Nov; 39(1):13. PubMed ID: 36380124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of oxalic acid by some fungi infected tubers.
    Faboya O; Ikotun T; Fatoki OS
    Z Allg Mikrobiol; 1983; 23(10):621-4. PubMed ID: 6670294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of oxalic acid tolerating fungi and decipherization of its potential to control Sclerotinia sclerotiorum through oxalate oxidase like protein.
    Yadav S; Srivastava AK; Singh DP; Arora DK
    World J Microbiol Biotechnol; 2012 Nov; 28(11):3197-206. PubMed ID: 22864600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxalate-metabolising genes of the white-rot fungus Dichomitus squalens are differentially induced on wood and at high proton concentration.
    Mäkelä MR; Sietiö OM; de Vries RP; Timonen S; Hildén K
    PLoS One; 2014; 9(2):e87959. PubMed ID: 24505339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyporales Brown Rot Species Fomitopsis pinicola: Enzyme Activity Profiles, Oxalic Acid Production, and Fe
    Shah F; Mali T; Lundell TK
    Appl Environ Microbiol; 2018 Apr; 84(8):. PubMed ID: 29439983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of oxalotrophic bacteria from tropical soils.
    Bravo D; Braissant O; Cailleau G; Verrecchia E; Junier P
    Arch Microbiol; 2015 Jan; 197(1):65-77. PubMed ID: 25381572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of metabolic network of oxalic acid biosynthesis through RNA seq data analysis of developing spikes of finger millet (Eleusine coracana): Deciphering the role of key genes involved in oxalate formation in relation to grain calcium accumulation.
    Akbar N; Gupta S; Tiwari A; Singh KP; Kumar A
    Gene; 2018 Apr; 649():40-49. PubMed ID: 29459009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physiological role for oxalic acid biosynthesis in the wood-rotting basidiomycete Fomitopsis palustris.
    Munir E; Yoon JJ; Tokimatsu T; Hattori T; Shimada M
    Proc Natl Acad Sci U S A; 2001 Sep; 98(20):11126-30. PubMed ID: 11553780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxalic acid: a signal molecule for fungus-feeding bacteria of the genus Collimonas?
    Rudnick MB; van Veen JA; de Boer W
    Environ Microbiol Rep; 2015 Oct; 7(5):709-14. PubMed ID: 25858310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pathogenic white-rot fungus Heterobasidion parviporum responds to spruce xylem defense by enhanced production of oxalic acid.
    Nagy NE; Kvaalen H; Fongen M; Fossdal CG; Clarke N; Solheim H; Hietala AM
    Mol Plant Microbe Interact; 2012 Nov; 25(11):1450-8. PubMed ID: 23035954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxalate decarboxylase: biotechnological update and prevalence of the enzyme in filamentous fungi.
    Mäkelä MR; Hildén K; Lundell TK
    Appl Microbiol Biotechnol; 2010 Jul; 87(3):801-14. PubMed ID: 20464388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the mechanism of enzyme action. XLV. The role of certain dicarboxylic acids in the formation of oxalic acid by wood-destroying molds.
    De STEVENS G; DeBAUN RM; NORD FF
    Arch Biochem Biophys; 1951 Sep; 33(2):304-13. PubMed ID: 14886012
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.