BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 38662188)

  • 1. MicroRNAs from edible plants reach the human gastrointestinal tract and may act as potential regulators of gene expression.
    Díez-Sainz E; Milagro FI; Aranaz P; Riezu-Boj JI; Lorente-Cebrián S
    J Physiol Biochem; 2024 Apr; ():. PubMed ID: 38662188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. miR482f and miR482c-5p from edible plant-derived foods inhibit the expression of pro-inflammatory genes in human THP-1 macrophages.
    Díez-Sainz E; Lorente-Cebrián S; Aranaz P; Amri EZ; Riezu-Boj JI; Milagro FI
    Front Nutr; 2023; 10():1287312. PubMed ID: 38099184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Potential Mechanisms Linking Food-Derived MicroRNAs, Gut Microbiota and Intestinal Barrier Functions in the Context of Nutrition and Human Health.
    Díez-Sainz E; Lorente-Cebrián S; Aranaz P; Riezu-Boj JI; Martínez JA; Milagro FI
    Front Nutr; 2021; 8():586564. PubMed ID: 33768107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of transfer of miRNAs from the diet to the blood still inconclusive.
    Mar-Aguilar F; Arreola-Triana A; Mata-Cardona D; Gonzalez-Villasana V; Rodríguez-Padilla C; Reséndez-Pérez D
    PeerJ; 2020; 8():e9567. PubMed ID: 32995073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survey of 800+ data sets from human tissue and body fluid reveals xenomiRs are likely artifacts.
    Kang W; Bang-Berthelsen CH; Holm A; Houben AJ; Müller AH; Thymann T; Pociot F; Estivill X; Friedländer MR
    RNA; 2017 Apr; 23(4):433-445. PubMed ID: 28062594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of dietetically absorbed maize-derived microRNAs in pigs.
    Luo Y; Wang P; Wang X; Wang Y; Mu Z; Li Q; Fu Y; Xiao J; Li G; Ma Y; Gu Y; Jin L; Ma J; Tang Q; Jiang A; Li X; Li M
    Sci Rep; 2017 Apr; 7(1):645. PubMed ID: 28381865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-kingdom inhibition of breast cancer growth by plant miR159.
    Chin AR; Fong MY; Somlo G; Wu J; Swiderski P; Wu X; Wang SE
    Cell Res; 2016 Feb; 26(2):217-28. PubMed ID: 26794868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Food-Derived Xeno-microRNAs: Influence of Diet and Detectability in Gastrointestinal Tract-Proof-of-Principle Study.
    Link J; Thon C; Schanze D; Steponaitiene R; Kupcinskas J; Zenker M; Canbay A; Malfertheiner P; Link A
    Mol Nutr Food Res; 2019 Jan; 63(2):e1800076. PubMed ID: 30378765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates.
    Jia M; He J; Bai W; Lin Q; Deng J; Li W; Bai J; Fu D; Ma Y; Ren J; Xiong S
    Food Funct; 2021 Oct; 12(20):9549-9562. PubMed ID: 34664582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNA-mediated host defense mechanisms against pathogens and herbivores in rice: balancing gains from genetic resistance with trade-offs to productivity potential.
    Kumar K; Mandal SN; Neelam K; de Los Reyes BG
    BMC Plant Biol; 2022 Jul; 22(1):351. PubMed ID: 35850632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High degradation and no bioavailability of artichoke miRNAs assessed using an in vitro digestion/Caco-2 cell model.
    Cavallini A; Minervini F; Garbetta A; Lippolis C; Scamarcio G; Di Franco C; D'Alessandro R
    Nutr Res; 2018 Dec; 60():68-76. PubMed ID: 30527261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNAs from plants to animals, do they define a new messenger for communication?
    Li Z; Xu R; Li N
    Nutr Metab (Lond); 2018; 15():68. PubMed ID: 30302122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dietary plant miRNAs as an augmented therapy: cross-kingdom gene regulation.
    Sanchita ; Trivedi R; Asif MH; Trivedi PK
    RNA Biol; 2018; 15(12):1433-1439. PubMed ID: 30474479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant miRNA bol-miR159 Regulates Gut Microbiota Composition in Mice:
    Xu Q; Qin X; Zhang Y; Xu K; Li Y; Li Y; Qi B; Li Y; Yang X; Wang X
    J Agric Food Chem; 2023 Nov; 71(43):16160-16173. PubMed ID: 37862127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant and Animal microRNAs (miRNAs) and Their Potential for Inter-kingdom Communication.
    Zhao Y; Cong L; Lukiw WJ
    Cell Mol Neurobiol; 2018 Jan; 38(1):133-140. PubMed ID: 28879580
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process.
    Philip A; Ferro VA; Tate RJ
    Mol Nutr Food Res; 2015 Oct; 59(10):1962-72. PubMed ID: 26147655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-Kingdom Regulation by Plant microRNAs Provides Novel Insight into Gene Regulation.
    Samad AFA; Kamaroddin MF; Sajad M
    Adv Nutr; 2021 Feb; 12(1):197-211. PubMed ID: 32862223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stability and absorption mechanism of typical plant miRNAs in an in vitro gastrointestinal environment: basis for their cross-kingdom nutritional effects.
    Wang X; Ren X; Ning L; Wang P; Xu K
    J Nutr Biochem; 2020 Jul; 81():108376. PubMed ID: 32330841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of plant MicroRNA in cross-species regulatory networks of humans.
    Zhang H; Li Y; Liu Y; Liu H; Wang H; Jin W; Zhang Y; Zhang C; Xu D
    BMC Syst Biol; 2016 Aug; 10(1):60. PubMed ID: 27502923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.