These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38662431)

  • 1. Capillary Condensation of Water in Graphene Nanocapillaries.
    Faraji F; Neyts EC; Milošević MV; Peeters FM
    Nano Lett; 2024 May; 24(18):5625-5630. PubMed ID: 38662431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillary condensation under atomic-scale confinement.
    Yang Q; Sun PZ; Fumagalli L; Stebunov YV; Haigh SJ; Zhou ZW; Grigorieva IV; Wang FC; Geim AK
    Nature; 2020 Dec; 588(7837):250-253. PubMed ID: 33299189
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Uhlig MR; Garcia R
    Nano Lett; 2021 Jul; 21(13):5593-5598. PubMed ID: 33983752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing Kapitza resistance between graphene/water interface via interfacial superlattice structure.
    Peng X; Jiang P; Ouyang Y; Lu S; Ren W; Chen J
    Nanotechnology; 2021 Oct; 33(3):. PubMed ID: 34644695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of surface hydration on capillary adhesion under nanoscale confinement.
    Huang S; Colosqui CE; Young YN; Stone HA
    Soft Matter; 2022 Jun; 18(25):4786-4791. PubMed ID: 35708007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics analysis of the influence of Coulomb and van der Waals interactions on the work of adhesion at the solid-liquid interface.
    Surblys D; Leroy F; Yamaguchi Y; Müller-Plathe F
    J Chem Phys; 2018 Apr; 148(13):134707. PubMed ID: 29626889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring Anomalous Fluid Behavior at the Nanoscale: Direct Visualization and Quantification via Nanofluidic Devices.
    Zhong J; Alibakhshi MA; Xie Q; Riordon J; Xu Y; Duan C; Sinton D
    Acc Chem Res; 2020 Feb; 53(2):347-357. PubMed ID: 31922716
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invariance of the solid-liquid interfacial energy in electrowetting probed via capillary condensation.
    Gupta R; Olivier GK; Frechette J
    Langmuir; 2010 Jul; 26(14):11946-50. PubMed ID: 20552998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillarity at the nanoscale.
    van Honschoten JW; Brunets N; Tas NR
    Chem Soc Rev; 2010 Mar; 39(3):1096-114. PubMed ID: 20179827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects.
    Alexeev D; Chen J; Walther JH; Giapis KP; Angelikopoulos P; Koumoutsakos P
    Nano Lett; 2015 Sep; 15(9):5744-9. PubMed ID: 26274389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase behavior of single and multi-component liquid hydrocarbons in real reservoir rocks.
    Al-Kindi I; Babadagli T
    Sci Rep; 2023 Mar; 13(1):4507. PubMed ID: 36934151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-Liquid Interface Thermal Resistance Affects the Evaporation Rate of Droplets from a Surface: A Study of Perfluorohexane on Chromium Using Molecular Dynamics and Continuum Theory.
    Han H; Schlawitschek C; Katyal N; Stephan P; Gambaryan-Roisman T; Leroy F; Müller-Plathe F
    Langmuir; 2017 May; 33(21):5336-5343. PubMed ID: 28492334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamics of capillary adhesion between rough surfaces.
    de Boer MP; de Boer PC
    J Colloid Interface Sci; 2007 Jul; 311(1):171-85. PubMed ID: 17368659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric-field-induced condensation: an extension of the Kelvin equation.
    Butt HJ; Untch MB; Golriz A; Pihan SA; Berger R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061604. PubMed ID: 21797377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mesoscopic Model for Disjoining Pressure Effects in Nanoscale Thin Liquid Films and Evaporating Extended Meniscuses.
    Hu Z; Gong S
    Langmuir; 2023 Sep; 39(37):13359-13370. PubMed ID: 37677082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure dependence of Kapitza resistance at gold/water and silicon/water interfaces.
    Pham A; Barisik M; Kim B
    J Chem Phys; 2013 Dec; 139(24):244702. PubMed ID: 24387383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Kapitza resistance at fluid-solid interfaces.
    Alosious S; Kannam SK; Sathian SP; Todd BD
    J Chem Phys; 2019 Nov; 151(19):194502. PubMed ID: 31757152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics investigation of surface roughness scale effect on interfacial thermal conductance at solid-liquid interfaces.
    Surblys D; Kawagoe Y; Shibahara M; Ohara T
    J Chem Phys; 2019 Mar; 150(11):114705. PubMed ID: 30902019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting in hydrophobic nanochannels: a challenge of classical capillarity.
    Helmy R; Kazakevich Y; Ni C; Fadeev AY
    J Am Chem Soc; 2005 Sep; 127(36):12446-7. PubMed ID: 16144365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: Is a coarse-grained model for water sufficient to compute Kapitza conductance on non-polar surfaces?
    Ardham VR; Leroy F
    J Chem Phys; 2017 Oct; 147(15):151102. PubMed ID: 29055310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.