These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 38662647)
1. Controllable Regulation of the Oxygen Redox Process in Lithium-Oxygen Batteries by High-Configuration-Entropy Spinel with an Asymmetric Octahedral Structure. Tian G; Xu H; Wang X; Wen X; Liu P; Liu S; Zeng T; Fan F; Wang S; Wang C; Zeng C; Shu C ACS Nano; 2024 May; 18(18):11849-11862. PubMed ID: 38662647 [TBL] [Abstract][Full Text] [Related]
2. Entropy Stabilization Effect and Oxygen Vacancies Enabling Spinel Oxide Highly Reversible Lithium-Ion Storage. Zhao J; Yang X; Huang Y; Du F; Zeng Y ACS Appl Mater Interfaces; 2021 Dec; 13(49):58674-58681. PubMed ID: 34873905 [TBL] [Abstract][Full Text] [Related]
3. Adjusting the d-band center of metallic sites in NiFe-based Bimetal-organic frameworks via tensile strain to achieve High-performance oxygen electrode catalysts for Lithium-oxygen batteries. Zhao C; Shu C; Zheng R; Du D; Ren L; He M; Li R; Xu H; Wen X; Long J J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1215-1225. PubMed ID: 34571308 [TBL] [Abstract][Full Text] [Related]
4. Robust oxygen adsorbent mediated oxygen redox reactions for high performance lithium-oxygen battery. Du D; Liu P; Tian G; Xu H; Wang X; Liu S; Fan F; Wang S; Wang C; Zeng C; Shu C J Colloid Interface Sci; 2025 Jan; 678(Pt B):570-577. PubMed ID: 39265329 [TBL] [Abstract][Full Text] [Related]
5. Atomic Ruthenium-Riveted Metal-Organic Framework with Tunable d-Band Modulates Oxygen Redox for Lithium-Oxygen Batteries. Lv Q; Zhu Z; Ni Y; Wen B; Jiang Z; Fang H; Li F J Am Chem Soc; 2022 Dec; 144(50):23239-23246. PubMed ID: 36474358 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Li-Ion Diffusion and Cycling Stability of Ni-Free High-Entropy Spinel Oxide Anodes with High-Concentration Oxygen Vacancies. Xiao B; Wu G; Wang T; Wei Z; Xie Z; Sui Y; Qi J; Wei F; Zhang X; Tang LB; Zheng JC ACS Appl Mater Interfaces; 2023 Jan; 15(2):2792-2803. PubMed ID: 36606677 [TBL] [Abstract][Full Text] [Related]
7. Tailoring the growth route of lithium peroxide through the rational design of a sodium-doped nickel phosphate catalyst for lithium-oxygen batteries. Li SS; Zhao XH; Wang KX; Chen JS Chem Commun (Camb); 2023 Oct; 59(79):11839-11842. PubMed ID: 37712201 [TBL] [Abstract][Full Text] [Related]
8. Chromium-doped inverse spinel electrocatalysts with optimal orbital occupancy for facilitating reaction kinetics of lithium-oxygen batteries. Fan Y; Li R; Zhao C; Hu A; Zhou B; Pan Y; Chen J; Yan Z; Liu M; He M; Liu J; Chen N; Long J J Colloid Interface Sci; 2023 Sep; 645():439-447. PubMed ID: 37156152 [TBL] [Abstract][Full Text] [Related]
9. Unlocking the critical roles of N, P Co-Doping in MXene for Lithium-Oxygen Batteries: Elevated d-Band center and expanded interlayer spacing. Wang Z; Dong Z; Wu B; Wang Z; Qiu Z; Wang D; Zeng Q; Liu X; Nam Hui K; Liu Z; Zhang Y J Colloid Interface Sci; 2024 Dec; 676():368-377. PubMed ID: 39032419 [TBL] [Abstract][Full Text] [Related]
10. Constructed Mott-Schottky Heterostructure Catalyst to Trigger Interface Disturbance and Manipulate Redox Kinetics in Li-O Xia Y; Wang L; Gao G; Mao T; Wang Z; Jin X; Hong Z; Han J; Peng DL; Yue G Nanomicro Lett; 2024 Jul; 16(1):258. PubMed ID: 39073728 [TBL] [Abstract][Full Text] [Related]
11. Uncovering the Electrolyte-Dependent Transport Mechanism of LiO Jiang Z; Rappe AM J Am Chem Soc; 2022 Dec; 144(48):22150-22158. PubMed ID: 36442495 [TBL] [Abstract][Full Text] [Related]
12. Formation/Decomposition of Li Liu Y; Wang K; Peng X; Wang C; Fang W; Zhu Y; Chen Y; Liu L; Wu Y ACS Appl Mater Interfaces; 2022 Apr; 14(14):16214-16221. PubMed ID: 35357809 [TBL] [Abstract][Full Text] [Related]
13. Multi-functional integrated design of a copper foam-based cathode for high-performance lithium-oxygen batteries. Lan J; Yu Y; Miao F; Zhang P; Shao G Nanoscale; 2024 May; 16(21):10283-10291. PubMed ID: 38720648 [TBL] [Abstract][Full Text] [Related]
14. Crown Ether Electrolyte Induced Li Li M; Wu J; You Z; Dai Z; Gu Y; Shi L; Wu M; Wen Z Angew Chem Int Ed Engl; 2024 Jul; 63(27):e202403521. PubMed ID: 38654696 [TBL] [Abstract][Full Text] [Related]
15. 2D MXene/MBene Superlattice with Narrow Bandgap as Superior Electrocatalyst for High-Performance Lithium-Oxygen Battery. Liu P; Xu H; Wang X; Tian G; Yu X; Wang C; Zeng C; Wang S; Fan F; Liu S; Shu C Small; 2024 Nov; 20(45):e2404483. PubMed ID: 39046318 [TBL] [Abstract][Full Text] [Related]
16. Identifying the Role of Lewis-base Sites for the Chemistry in Lithium-Oxygen Batteries. Zhao C; Yan Z; Zhou B; Pan Y; Hu A; He M; Liu J; Long J Angew Chem Int Ed Engl; 2023 Aug; 62(32):e202302746. PubMed ID: 37300514 [TBL] [Abstract][Full Text] [Related]
17. Amphi-Active Superoxide-Solvating Charge Redox Mediator for Highly Stable Lithium-Oxygen Batteries. Kim J; Jeong J; Jung GY; Lee J; Lee JE; Baek K; Kang SJ; Kwak SK; Hwang C; Song HK ACS Appl Mater Interfaces; 2022 Sep; 14(36):40793-40800. PubMed ID: 36044267 [TBL] [Abstract][Full Text] [Related]
19. Ruthenium atoms anchored on oxygen-modified molybdenum disulfide with strong interfacial coupling as efficient and stable catalysts for lithium-oxygen batteries. Cao X; Cui M; Fang K; Yan L; Gong H; Zhang Y; Zheng X; Yang R J Colloid Interface Sci; 2025 Feb; 679(Pt A):234-242. PubMed ID: 39362148 [TBL] [Abstract][Full Text] [Related]
20. Metal-organic frameworks-derived hollow dodecahedral carbon combined with FeN Yao L; Lin J; Li S; Wu Y; Ding H; Zheng H; Xu W; Xie T; Yue G; Peng D J Colloid Interface Sci; 2021 Aug; 596():1-11. PubMed ID: 33826967 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]