These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38662912)

  • 1. Synaptic Properties of a PbHfO
    Huang WY; Nie LH; Lai XC; Fang JL; Chen ZL; Chen JY; Jiang YP; Tang XG
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38662912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An adjustable multistage resistance switching behavior of a photoelectric artificial synaptic device with a ferroelectric diode effect for neuromorphic computing.
    Lai XC; Tang Z; Fang J; Feng L; Yao DJ; Zhang L; Jiang YP; Liu QX; Tang XG; Zhou YC; Shang J; Zhong GK; Gao J
    Mater Horiz; 2024 Jun; 11(12):2886-2897. PubMed ID: 38563639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuromorphic Computing of Optoelectronic Artificial BFCO/AZO Heterostructure Memristors Synapses.
    Fan ZY; Tang Z; Fang JL; Jiang YP; Liu QX; Tang XG; Zhou YC; Gao J
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reproducible Ultrathin Ferroelectric Domain Switching for High-Performance Neuromorphic Computing.
    Li J; Ge C; Du J; Wang C; Yang G; Jin K
    Adv Mater; 2020 Feb; 32(7):e1905764. PubMed ID: 31850652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-10 nm HfZrO ferroelectric synapse with multiple layers and different ratios for neuromorphic computing.
    Chen B; Wang C; Zhan X; Wu S; Tai L; Mei J; Wu J; Chen J
    Nanotechnology; 2023 Oct; 34(50):. PubMed ID: 37725957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New-Style Logic Operation and Neuromorphic Computing Enabled by Optoelectronic Artificial Synapses in an MXene/Y:HfO
    Fang J; Tang Z; Lai XC; Qiu F; Jiang YP; Liu QX; Tang XG; Sun QJ; Zhou YC; Fan JM; Gao J
    ACS Appl Mater Interfaces; 2024 Jun; 16(24):31348-31362. PubMed ID: 38833382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic Memristor with Synaptic Plasticity for Neuromorphic Computing Applications.
    Zeng J; Chen X; Liu S; Chen Q; Liu G
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial Visual Synaptic Architecture with High-Linearity Light-Modulated Weight for Optoelectronic Neuromorphic Computing.
    Liu Y; Wang B; Wu L; Huang L; Lin L; Xiang L; Liu D; Zhang S; Zhu C; Tao Y; Li D; Pan A
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37885218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence.
    Wang J; Zhuge X; Zhuge F
    Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast and Low-Power 2D Bi
    Dong Z; Hua Q; Xi J; Shi Y; Huang T; Dai X; Niu J; Wang B; Wang ZL; Hu W
    Nano Lett; 2023 May; 23(9):3842-3850. PubMed ID: 37093653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible, Transparent, and Wafer-Scale Artificial Synapse Array Based on TiO
    Huang J; Yang S; Tang X; Yang L; Chen W; Chen Z; Li X; Zeng Z; Tang Z; Gui X
    Adv Mater; 2023 Aug; 35(33):e2303737. PubMed ID: 37339620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferroelectricity-Defects Synergistic Artificial Synapses for High Recognition Accuracy Neuromorphic Computing.
    Dong S; Liu H; Wang Y; Bian J; Su J
    ACS Appl Mater Interfaces; 2024 Apr; 16(15):19235-19246. PubMed ID: 38584351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Nanodots Memristor: An Emerging Candidate toward Artificial Biosynapse and Human Sensory Perception System.
    Zhang C; Chen M; Pan Y; Li Y; Wang K; Yuan J; Sun Y; Zhang Q
    Adv Sci (Weinh); 2023 Jun; 10(16):e2207229. PubMed ID: 37072642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competing memristors for brain-inspired computing.
    Kim SJ; Kim SB; Jang HW
    iScience; 2021 Jan; 24(1):101889. PubMed ID: 33458606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide based synaptic memristor device for neuromorphic computing.
    Sahu DP; Jetty P; Jammalamadaka SN
    Nanotechnology; 2021 Apr; 32(15):155701. PubMed ID: 33412536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ambient Stable All Inorganic CsCu
    Kwak KJ; Baek JH; Lee DE; Im IH; Kim J; Kim SJ; Lee YJ; Kim JY; Jang HW
    Nano Lett; 2022 Jul; 22(14):6010-6017. PubMed ID: 35675157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Performance Neuromorphic Computing and Logic Operation Based on a Self-Assembled Vertically Aligned Nanocomposite SrTiO
    Guo Z; Liu G; Sun Y; Zhang Y; Zhao J; Liu P; Wang H; Zhou Z; Zhao Z; Jia X; Sun J; Shao Y; Han X; Zhang Z; Yan X
    ACS Nano; 2023 Nov; 17(21):21518-21530. PubMed ID: 37897737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.