These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38662966)

  • 1. Quantitative Time-of-Flight Head Magnetic Resonance Angiography of Cerebrovascular Disease.
    Koktzoglou I; Ozturk O; Walker MT; Ankenbrandt WJ; Ong AL; Ares WJ; Gil FR; Bulwa ZB; Edelman RR
    J Magn Reson Imaging; 2024 Apr; ():. PubMed ID: 38662966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative time-of-flight MR angiography for simultaneous luminal and hemodynamic evaluation of the intracranial arteries.
    Koktzoglou I; Huang R; Edelman RR
    Magn Reson Med; 2022 Jan; 87(1):150-162. PubMed ID: 34374455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intracranial arterial flow velocity mapping in quantitative time-of-flight MR angiography using deep machine learning.
    Koktzoglou I; Huang R
    Magn Reson Imaging; 2023 Jul; 100():10-17. PubMed ID: 36822451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of PETRA-MRA to assess intracranial arterial stenosis: Comparison with TOF-MRA, CTA, and DSA.
    Niu J; Ran Y; Chen R; Zhang F; Lei X; Wang X; Li T; Zhu J; Zhang Y; Cheng J; Zhang Y; Zhu C
    Front Neurol; 2022; 13():1068132. PubMed ID: 36726752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Intracranial Vessel Imaging With Non-Cartesian Spiral 3-Dimensional Time-of-Flight Magnetic Resonance Angiography at 1.5 T: An In Vitro and Clinical Study in Healthy Volunteers.
    Sartoretti T; van Smoorenburg L; Sartoretti E; Schwenk Á; Binkert CA; Kulcsár Z; Becker AS; Graf N; Wyss M; Sartoretti-Schefer S
    Invest Radiol; 2020 May; 55(5):293-303. PubMed ID: 31895223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonenhanced hybridized arterial spin labeled magnetic resonance angiography of the extracranial carotid arteries using a fast low angle shot readout at 3 Tesla.
    Koktzoglou I; Walker MT; Meyer JR; Murphy IG; Edelman RR
    J Cardiovasc Magn Reson; 2016 Apr; 18():18. PubMed ID: 27067840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional spin-echo-based black-blood MRA in the detection of vasospasm following subarachnoid hemorrhage.
    Takano K; Hida K; Iwaasa M; Inoue T; Yoshimitsu K
    J Magn Reson Imaging; 2019 Mar; 49(3):800-807. PubMed ID: 30284331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical feasibility study of 3D intracranial magnetic resonance angiography using compressed sensing.
    Lin Z; Zhang X; Guo L; Wang K; Jiang Y; Hu X; Huang Y; Wei J; Ma S; Liu Y; Zhu L; Zhuo Z; Liu J; Wang X
    J Magn Reson Imaging; 2019 Dec; 50(6):1843-1851. PubMed ID: 30980468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncontrast-enhanced time-resolved 4D dynamic intracranial MR angiography at 7T: A feasibility study.
    Cong F; Zhuo Y; Yu S; Zhang X; Miao X; An J; Wang S; Cao Y; Zhang Y; Song HK; Wang DJ; Yan L
    J Magn Reson Imaging; 2018 Jul; 48(1):111-120. PubMed ID: 29232026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly accelerated time-of-flight magnetic resonance angiography using spiral imaging improves conspicuity of intracranial arterial branches while reducing scan time.
    Greve T; Sollmann N; Hock A; Hey S; Gnanaprakasam V; Nijenhuis M; Zimmer C; Kirschke JS
    Eur Radiol; 2020 Feb; 30(2):855-865. PubMed ID: 31664504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical evaluation of subtracted pointwise encoding time reduction with radial acquisition-based magnetic resonance angiography compared to 3D time-of-flight magnetic resonance angiography for improved flow dephasing at 3 Tesla.
    Fu Q; Zhang XY; Deng XB; Liu DX
    Magn Reson Imaging; 2020 Nov; 73():104-110. PubMed ID: 32858182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can Hybrid Arterial Spin Labeling-Tagged Zero-Echo-Time Magnetic Resonance Angiography Be an Effective Candidate in the Evaluation of Intracranial Artery Diseases? A Clinical Feasibility Study.
    Shang S; Wang L; Ye J; Luo X; Zhang H; Dou W; Wu J; Li D
    J Magn Reson Imaging; 2021 Sep; 54(3):938-949. PubMed ID: 34014010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3 T contrast-enhanced magnetic resonance angiography for evaluation of the intracranial arteries: comparison with time-of-flight magnetic resonance angiography and multislice computed tomography angiography.
    Villablanca JP; Nael K; Habibi R; Nael A; Laub G; Finn JP
    Invest Radiol; 2006 Nov; 41(11):799-805. PubMed ID: 17035870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of Intracranial Atherosclerotic Plaques Using 3D Black-Blood MRI: Comparison With 3D Time-of-Flight MRA and DSA.
    Tian X; Tian B; Shi Z; Wu X; Peng W; Zhang X; Malhotra A; Mossa-Basha M; Sekhar L; Liu Q; Lu J; Hu C; Zhu C
    J Magn Reson Imaging; 2021 Feb; 53(2):469-478. PubMed ID: 32864816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ungated nonenhanced radial quiescent interval slice-selective (QISS) magnetic resonance angiography of the neck: Evaluation of image quality.
    Koktzoglou I; Aherne EA; Walker MT; Meyer JR; Edelman RR
    J Magn Reson Imaging; 2019 Dec; 50(6):1798-1807. PubMed ID: 31077477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vessel length on SNAP MRA and TOF MRA is a potential imaging biomarker for brain blood flow.
    Gould A; Chen Z; Geleri DB; Balu N; Zhou Z; Chen L; Chu B; Pimentel K; Canton G; Hatsukami T; Yuan C
    Magn Reson Imaging; 2021 Jun; 79():20-27. PubMed ID: 33689778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography - initial experience.
    Mönninghoff C; Maderwald S; Theysohn JM; Kraff O; Ladd SC; Ladd ME; Forsting M; Quick HH; Wanke I
    Rofo; 2009 Jan; 181(1):16-23. PubMed ID: 19115164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography.
    Zhang X; Cao YZ; Mu XH; Sun Y; Schmidt M; Forman C; Speier P; Lu SS; Hong XN
    Eur Radiol; 2020 Jun; 30(6):3059-3065. PubMed ID: 32064562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of morphometry and intensity features of intracranial arteries from 3D TOF MRA using the intracranial artery feature extraction (iCafe): A reproducibility study.
    Chen L; Mossa-Basha M; Sun J; Hippe DS; Balu N; Yuan Q; Pimentel K; Hatsukami TS; Hwang JN; Yuan C
    Magn Reson Imaging; 2019 Apr; 57():293-302. PubMed ID: 30580079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated Time-of-Flight Magnetic Resonance Angiography with Sparse Undersampling and Iterative Reconstruction for the Evaluation of Intracranial Arteries.
    Tang H; Hu N; Yuan Y; Xia C; Liu X; Zuo P; Stalder AF; Schmidt M; Zhou X; Song B; Sun J
    Korean J Radiol; 2019 Feb; 20(2):265-274. PubMed ID: 30672166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.