These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 38663035)
1. Donor-Acceptor Modulating of Ionic AIE Photosensitizers for Enhanced ROS Generation and NIR-II Emission. Yang X; Wang X; Zhang X; Zhang J; Lam JWY; Sun H; Yang J; Liang Y; Tang BZ Adv Mater; 2024 Jul; 36(28):e2402182. PubMed ID: 38663035 [TBL] [Abstract][Full Text] [Related]
2. Highly Efficient Multifunctional Organic Photosensitizer with Aggregation-Induced Emission for Liao Y; Wang R; Wang S; Xie Y; Chen H; Huang R; Shao L; Zhu Q; Liu Y ACS Appl Mater Interfaces; 2021 Nov; 13(46):54783-54793. PubMed ID: 34763423 [TBL] [Abstract][Full Text] [Related]
3. Highly Efficient Near-Infrared Photosensitizers with Aggregation-Induced Emission Characteristics: Rational Molecular Design and Photodynamic Cancer Cell Ablation. Chen D; Long Z; Zhong C; Chen L; Dang Y; Hu JJ; Lou X; Xia F ACS Appl Bio Mater; 2021 Jun; 4(6):5231-5239. PubMed ID: 35007005 [TBL] [Abstract][Full Text] [Related]
4. Unusual Electron Donor-Acceptor Sequenced NIR AIEgen for Highly Efficient Mitochondria-Targeted Cancer Cell Photodynamic Therapy. Yu K; Pan J; Tian M; Zhang H; Jin C; Zhang H; Mao Z; He Q Chem Asian J; 2022 Sep; 17(17):e202200571. PubMed ID: 35789116 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrion-Anchored Photosensitizer with Near Infrared-I Aggregation-Induced Emission for Near Infrared-II Two-Photon Photodynamic Therapy. He Z; Gao Y; Zhang H; Xue Y; Meng F; Luo L Adv Healthc Mater; 2021 Dec; 10(24):e2101056. PubMed ID: 34569175 [TBL] [Abstract][Full Text] [Related]
6. Red/NIR emissive aggregation-induced emission-active photosensitizers with strong donor-acceptor strength for image-guided photodynamic therapy of cancer. Ma Y; Yin W; Ji S; Wang J; Lam JWY; Kwok RTK; Huo Y; Sun J; Tang BZ Luminescence; 2023 Dec; 38(12):2086-2094. PubMed ID: 37740529 [TBL] [Abstract][Full Text] [Related]
7. Design and structural regulation of AIE photosensitizers for imaging-guided photodynamic anti-tumor application. Jia S; Yuan H; Hu R Biomater Sci; 2022 Aug; 10(16):4443-4457. PubMed ID: 35789348 [TBL] [Abstract][Full Text] [Related]
8. Reversible pH-switchable NIR-II nano-photosensitizer for precise imaging and photodynamic therapy of tumors. Chai Y; Sun Y; Sheng Z; Zhu Y; Du T; Zhu B; Yu H; Dong B; Liu Y; Wang HY Acta Biomater; 2024 Oct; 188():315-328. PubMed ID: 39243836 [TBL] [Abstract][Full Text] [Related]
9. Combination of PEG-b-PAA Carrier and Efficient Cationic Photosensitizers for Photodynamic Therapy. Yang H; Shang Z; Shi Q; Gao J; Wang X; Hu F Chem Asian J; 2023 May; 18(10):e202300212. PubMed ID: 37029595 [TBL] [Abstract][Full Text] [Related]
10. Near-infrared-emitting AIE multinuclear cationic Ir(III) complex-assembled nanoparticles for photodynamic therapy. Li L; Zhang L; Tong X; Li Y; Yang Z; Zhu D; Su Z; Xie Z Dalton Trans; 2020 Nov; 49(43):15332-15338. PubMed ID: 33119005 [TBL] [Abstract][Full Text] [Related]
11. Molecular engineering to achieve AIE-active photosensitizers with NIR emission and rapid ROS generation efficiency. Ding G; Tong J; Gong J; Wang Z; Su Z; Liu L; Han X; Wang J; Zhang L; Wang X; Wen LL; Shan GG J Mater Chem B; 2022 Jul; 10(27):5272-5278. PubMed ID: 35766043 [TBL] [Abstract][Full Text] [Related]
12. Multifunctional Two-Photon AIE Luminogens for Highly Mitochondria-Specific Bioimaging and Efficient Photodynamic Therapy. Zhuang W; Yang L; Ma B; Kong Q; Li G; Wang Y; Tang BZ ACS Appl Mater Interfaces; 2019 Jun; 11(23):20715-20724. PubMed ID: 31144501 [TBL] [Abstract][Full Text] [Related]
13. Efficient Near-Infrared Photosensitizer with Aggregation-Induced Emission for Imaging-Guided Photodynamic Therapy in Multiple Xenograft Tumor Models. Dai J; Li Y; Long Z; Jiang R; Zhuang Z; Wang Z; Zhao Z; Lou X; Xia F; Tang BZ ACS Nano; 2020 Jan; 14(1):854-866. PubMed ID: 31820925 [TBL] [Abstract][Full Text] [Related]
14. Near-Infrared Organic Fluorescent Nanoparticles for Long-term Monitoring and Photodynamic Therapy of Cancer. Xia Q; Chen Z; Zhou Y; Liu R Nanotheranostics; 2019; 3(2):156-165. PubMed ID: 31008024 [TBL] [Abstract][Full Text] [Related]
15. Incorporating spin-orbit coupling promoted functional group into an enhanced electron D-A system: A useful designing concept for fabricating efficient photosensitizer and imaging-guided photodynamic therapy. Yang Z; Zhang Z; Sun Y; Lei Z; Wang D; Ma H; Tang BZ Biomaterials; 2021 Aug; 275():120934. PubMed ID: 34217019 [TBL] [Abstract][Full Text] [Related]
16. Recent advances in aggregation-induced emission-active type I photosensitizers with near-infrared fluorescence: From materials design to therapeutic platform fabrication. Xie Y; Li Z; Zhao C; Lv R; Li Y; Zhang Z; Teng M; Wan Q Luminescence; 2024 Jan; 39(1):e4621. PubMed ID: 38044321 [TBL] [Abstract][Full Text] [Related]
17. A structure-guided strategy to design Golgi apparatus-targeted type-I/II aggregation-induced emission photosensitizers for efficient photodynamic therapy. Zhao X; Wu X; Shang R; Chen H; Tan N Acta Biomater; 2024 Jul; 183():235-251. PubMed ID: 38801870 [TBL] [Abstract][Full Text] [Related]
18. Cationization to boost both type I and type II ROS generation for photodynamic therapy. Yu Y; Wu S; Zhang L; Xu S; Dai C; Gan S; Xie G; Feng G; Tang BZ Biomaterials; 2022 Jan; 280():121255. PubMed ID: 34810034 [TBL] [Abstract][Full Text] [Related]
19. Near-infrared light-regulated cancer theranostic nanoplatform based on aggregation-induced emission luminogen encapsulated upconversion nanoparticles. Jin G; He R; Liu Q; Lin M; Dong Y; Li K; Tang BZ; Liu B; Xu F Theranostics; 2019; 9(1):246-264. PubMed ID: 30662565 [TBL] [Abstract][Full Text] [Related]
20. AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy. Yu H; Chen B; Huang H; He Z; Sun J; Wang G; Gu X; Tang BZ Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]