These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38663208)

  • 21. Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification.
    Wan D; Liu H; Qu J; Lei P; Xiao S; Hou Y
    Bioresour Technol; 2009 Jan; 100(1):142-8. PubMed ID: 18619837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Denitrification of nitrate-contaminated groundwater using a simple immobilized activated sludge bioreactor.
    Ye Z; Wang F; Bi H; Wang Z; Liu GH
    Water Sci Technol; 2012; 66(3):517-24. PubMed ID: 22744681
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Denitrification in presence of acetate and glucose for bioremediation of nitrate-contaminated groundwater.
    Calderer M; Gibert O; Martí V; Rovira M; de Pablo J; Jordana S; Duro L; Guimerà J; Bruno J
    Environ Technol; 2010 Jun; 31(7):799-814. PubMed ID: 20586242
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent.
    Sahinkaya E; Kilic A; Duygulu B
    Water Res; 2014 Sep; 60():210-217. PubMed ID: 24862952
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrate removal from groundwater by hydrogen-fed autotrophic denitrification in a bio-ceramsite reactor.
    Chen D; Yang K; Wang H; Lv B
    Water Sci Technol; 2014; 69(12):2417-22. PubMed ID: 24960002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulating hydrogenotrophic denitrification in simulated groundwater containing high dissolved oxygen and nitrate concentrations.
    Schnobrich MR; Chaplin BP; Semmens MJ; Novak PJ
    Water Res; 2007 May; 41(9):1869-76. PubMed ID: 17363026
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of energy consumption of treating nitrate-contaminated groundwater by bioelectrochemical systems.
    Cecconet D; Zou S; Capodaglio AG; He Z
    Sci Total Environ; 2018 Sep; 636():881-890. PubMed ID: 29727854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biological denitrification in a continuous-flow pilot bioreactor containing immobilized Pseudomonas butanovora cells.
    Kesserü P; Kiss I; Bihari Z; Polyák B
    Bioresour Technol; 2003 Mar; 87(1):75-80. PubMed ID: 12733579
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of nitrate and hexavalent uranium from groundwater by sequential treatment in bioreactors packed with elemental sulfur and zero-valent iron.
    Luna-Velasco A; Sierra-Alvarez R; Castro B; Field JA
    Biotechnol Bioeng; 2010 Dec; 107(6):933-42. PubMed ID: 20661908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater.
    Pu J; Feng C; Liu Y; Li R; Kong Z; Chen N; Tong S; Hao C; Liu Y
    Bioresour Technol; 2014 Dec; 173():117-123. PubMed ID: 25299487
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Denitrification of drinking water by a combined process of heterotrophication and electrochemical autotrophication.
    Qu J; Fan B; Ge J; Liu H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002; 37(4):651-65. PubMed ID: 12046663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Combined bioelectrochemical and sulfur autotrophic denitrification for drinking water treatment.
    Wang H; Qu J
    Water Res; 2003 Sep; 37(15):3767-75. PubMed ID: 12867345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Continuous autotrophic denitrification process for treating ammonium-rich leachate wastewater in bioelectrochemical denitrification system (BEDS).
    Kondaveeti S; Kang E; Liu H; Min B
    Bioelectrochemistry; 2019 Dec; 130():107340. PubMed ID: 31450170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.
    Lv X; Shao M; Li J; Xie C
    Environ Technol; 2014; 35(21-24):2692-7. PubMed ID: 25176303
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of nitrate and sulfate reduction in the bioelectrochemically assisted dechlorination of cis-DCE.
    Lai A; Verdini R; Aulenta F; Majone M
    Chemosphere; 2015 Apr; 125():147-54. PubMed ID: 25556008
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of two combined bioelectrochemical and sulfur autotrophic denitrification processes for drinking water treatment.
    Wang H; Qu J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Jul; 38(7):1269-84. PubMed ID: 12916851
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogen-dependent denitrification in a two-reactor bio-electrochemical system.
    Szekeres S; Kiss I; Bejerano TT; Soares MI
    Water Res; 2001 Mar; 35(3):715-9. PubMed ID: 11228969
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer.
    Critchley K; Rudolph DL; Devlin JF; Schillig PC
    J Contam Hydrol; 2014 Dec; 171():66-80. PubMed ID: 25461888
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Simultaneous nitrate and sulfide removal using a bio-electrochemical system.
    Bayrakdar A; Tilahun E; Çalli B
    Bioelectrochemistry; 2019 Oct; 129():228-234. PubMed ID: 31226523
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone.
    Wu WM; Carley J; Fienen M; Mehlhorn T; Lowe K; Nyman J; Luo J; Gentile ME; Rajan R; Wagner D; Hickey RF; Gu B; Watson D; Cirpka OA; Kitanidis PK; Jardine PM; Criddle CS
    Environ Sci Technol; 2006 Jun; 40(12):3978-85. PubMed ID: 16830571
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.