These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 38663397)

  • 21. Roles of saprotrophic fungi in biodegradation or transformation of organic and inorganic pollutants in co-contaminated sites.
    Ceci A; Pinzari F; Russo F; Persiani AM; Gadd GM
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):53-68. PubMed ID: 30362074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monazite transformation into Ce- and La-containing oxalates by Aspergillus niger.
    Kang X; Csetenyi L; Gadd GM
    Environ Microbiol; 2020 Apr; 22(4):1635-1648. PubMed ID: 32114711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective fungal bioprecipitation of cobalt and nickel for multiple-product metal recovery.
    Ferrier J; Csetenyi L; Gadd GM
    Microb Biotechnol; 2021 Jul; 14(4):1747-1756. PubMed ID: 34115922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Potential of Penicillium species in the bioremediation field.
    Leitão AL
    Int J Environ Res Public Health; 2009 Apr; 6(4):1393-417. PubMed ID: 19440525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of Ni accumulation capability by fungi for a possible approach to remove metals from soils and waters.
    Cecchi G; Roccotiello E; Di Piazza S; Riggi A; Mariotti MG; Zotti M
    J Environ Sci Health B; 2017 Mar; 52(3):166-170. PubMed ID: 28121266
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review on simultaneous heavy metal removal and organo-contaminants degradation by potential microbes: Current findings and future outlook.
    Upadhyay SK; Rani N; Kumar V; Mythili R; Jain D
    Microbiol Res; 2023 Aug; 273():127419. PubMed ID: 37276759
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metals, minerals and microbes: geomicrobiology and bioremediation.
    Gadd GM
    Microbiology (Reading); 2010 Mar; 156(Pt 3):609-643. PubMed ID: 20019082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal and metalloid immobilization by microbiologically induced carbonates precipitation.
    Tamayo-Figueroa DP; Castillo E; Brandão PFB
    World J Microbiol Biotechnol; 2019 Mar; 35(4):58. PubMed ID: 30900009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies.
    Olaniran AO; Balgobind A; Pillay B
    Int J Mol Sci; 2013 May; 14(5):10197-228. PubMed ID: 23676353
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological leaching of heavy metals from a contaminated soil by Aspergillus niger.
    Ren WX; Li PJ; Geng Y; Li XJ
    J Hazard Mater; 2009 Aug; 167(1-3):164-9. PubMed ID: 19232463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals.
    Alvarez A; Saez JM; Davila Costa JS; Colin VL; Fuentes MS; Cuozzo SA; Benimeli CS; Polti MA; Amoroso MJ
    Chemosphere; 2017 Jan; 166():41-62. PubMed ID: 27684437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Heavy metals species affect fungal-bacterial synergism during the bioremediation of fluoranthene.
    Ma XK; Ding N; Peterson EC; Daugulis AJ
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7741-50. PubMed ID: 27178182
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioremediation of Dichlorodiphenyltrichloroethane (DDT)-Contaminated Agricultural Soils: Potential of Two Autochthonous Saprotrophic Fungal Strains.
    Russo F; Ceci A; Pinzari F; Siciliano A; Guida M; Malusà E; Tartanus M; Miszczak A; Maggi O; Persiani AM
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444208
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current overview and future perspective in fungal biorecovery of metals from secondary sources.
    Liapun V; Motola M
    J Environ Manage; 2023 Apr; 332():117345. PubMed ID: 36724599
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review.
    Ojuederie OB; Babalola OO
    Int J Environ Res Public Health; 2017 Dec; 14(12):. PubMed ID: 29207531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomineralization of Cu
    Kimber RL; Bagshaw H; Smith K; Buchanan DM; Coker VS; Cavet JS; Lloyd JR
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32680873
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fungal community diversity of heavy metal contaminated soils revealed by metagenomics.
    Passarini MRZ; Ottoni JR; Costa PEDS; Hissa DC; Falcão RM; Melo VMM; Balbino VQ; Mendonça LAR; Lima MGS; Coutinho HDM; Verde LCL
    Arch Microbiol; 2022 Apr; 204(5):255. PubMed ID: 35412096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cd (II) stress response during the growth of Aspergillus niger B 77.
    Todorova D; Nedeva D; Abrashev R; Tsekova K
    J Appl Microbiol; 2008 Jan; 104(1):178-84. PubMed ID: 17850314
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responses of soil fungal taxonomic attributes and enzyme activities to copper and cadmium co-contamination in paddy soils.
    Guo Y; Cheng S; Fang H; Yang Y; Li Y; Zhou Y
    Sci Total Environ; 2022 Oct; 844():157119. PubMed ID: 35798114
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial functionalities and immobilization of environmental lead: Biogeochemical and molecular mechanisms and implications for bioremediation.
    Elizabeth George S; Wan Y
    J Hazard Mater; 2023 Sep; 457():131738. PubMed ID: 37285788
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.