BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38663462)

  • 1. Ferroptosis resists intracellular Vibrio splendidus AJ01 mediated by ferroportin in sea cucumber Apostichopus japonicus.
    Wang C; Xiang Y; Shao Y; Li C
    Fish Shellfish Immunol; 2024 Jun; 149():109585. PubMed ID: 38663462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FliC of Vibrio splendidus-related strain involved in adhesion to Apostichopus japonicus.
    Dai F; Li Y; Shao Y; Li C; Zhang W
    Microb Pathog; 2020 Dec; 149():104503. PubMed ID: 32941968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. β-Integrin mediates LPS-induced coelomocyte apoptosis in sea cucumber Apostichopus japonicus via the integrin/FAK/caspase-3 signaling pathway.
    Wang Z; Li C; Xing R; Shao Y; Zhao X; Zhang W; Guo M
    Dev Comp Immunol; 2019 Feb; 91():26-36. PubMed ID: 30339873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and functional characterization of natural resistance-associated macrophage protein 2 from sea cucumber Apostichopus japonicus.
    Huang B; Lv Z; Li Y; Li C
    Dev Comp Immunol; 2021 Jan; 114():103835. PubMed ID: 32841622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective effects of chicken egg yolk antibody (IgY) against experimental Vibrio splendidus infection in the sea cucumber (Apostichopus japonicus).
    Li X; Jing K; Wang X; Li Y; Zhang M; Li Z; Xu L; Wang L; Xu Y
    Fish Shellfish Immunol; 2016 Jan; 48():105-11. PubMed ID: 26592708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and functional characterization of TNF receptor associated factor 3 in the sea cucumber Apostichopus japonicus.
    Yang L; Chang Y; Wang Y; Wei J; Ge C; Song J
    Dev Comp Immunol; 2016 Jun; 59():128-35. PubMed ID: 26828393
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AMPK-mediated glutaminolysis maintains coelomocytes redox homeostasis in Vibrio splendidus-challenged Apostichopus japonicus.
    Zhou F; Sun L; Shao Y; Zhang X; Li C
    Fish Shellfish Immunol; 2022 Mar; 122():170-180. PubMed ID: 35150828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NEDD4 activates mitophagy by interacting with LC3 to restrain reactive oxygen species and apoptosis in Apostichopus japonicus challenged with Vibrio splendidus.
    Xiang Y; Duan X; Shao Y; Sun L
    Fish Shellfish Immunol; 2023 Oct; 141():109037. PubMed ID: 37640120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indole reduces the expression of virulence related genes in Vibrio splendidus pathogenic to sea cucumber Apostichopus japonicus.
    Zhang S; Zhang W; Liu N; Song T; Liu H; Zhao X; Xu W; Li C
    Microb Pathog; 2017 Oct; 111():168-173. PubMed ID: 28867630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of phages to control Vibrio splendidus infection in the juvenile sea cucumber Apostichopus japonicus.
    Li Z; Li X; Zhang J; Wang X; Wang L; Cao Z; Xu Y
    Fish Shellfish Immunol; 2016 Jul; 54():302-11. PubMed ID: 27108378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A second FADD mediates coelomocyte apoptosis response to Vibrio splendidus infection in sea cucumber Apostichopus japonicus.
    Wang Y; Diao J; Wang B; Xu X; Gui M; Li C; Guo M
    Fish Shellfish Immunol; 2022 Aug; 127():396-404. PubMed ID: 35777710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MiR-31 modulates coelomocytes ROS production via targeting p105 in Vibrio splendidus challenged sea cucumber Apostichopus japonicus in vitro and in vivo.
    Lu M; Zhang P; Li C; Zhang W; Jin C; Han Q
    Fish Shellfish Immunol; 2015 Aug; 45(2):293-9. PubMed ID: 25917973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dietary Vibrio sp. 33 on growth, innate immunity, gut microbiota profile and disease resistance against Vibrio splendidus of juvenile sea cucumber Apostichopus japonicus.
    Lu T; Wang C; Guo M; Li C; Shao Y
    Dev Comp Immunol; 2024 Jan; 150():105081. PubMed ID: 37839671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MiR-200 modulates coelomocytes antibacterial activities and LPS priming via targeting Tollip in Apostichopus japonicus.
    Lv Z; Li C; Zhang P; Wang Z; Zhang W; Jin CH
    Fish Shellfish Immunol; 2015 Aug; 45(2):431-6. PubMed ID: 25910848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning and functional characterization of cathepsin B from the sea cucumber Apostichopus japonicus.
    Chen H; Lv M; Lv Z; Li C; Xu W; Zhang W; Zhao X; Duan X; Jin C
    Fish Shellfish Immunol; 2017 Jan; 60():447-457. PubMed ID: 27847342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of tussah immunoreactive substances on growth, immunity, disease resistance against Vibrio splendidus and gut microbiota profile of Apostichopus japonicus.
    Ma S; Sun Y; Wang F; Mi R; Wen Z; Li X; Meng N; Li Y; Du X; Li S
    Fish Shellfish Immunol; 2017 Apr; 63():471-479. PubMed ID: 28254498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dietary live yeast Hanseniaspora opuntiae C21 on the immune and disease resistance against Vibrio splendidus infection in juvenile sea cucumber Apostichopus japonicus.
    Ma Y; Liu Z; Yang Z; Li M; Liu J; Song J
    Fish Shellfish Immunol; 2013 Jan; 34(1):66-73. PubMed ID: 23063538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR210 modulates respiratory burst in Apostichopus japonicus coelomocytes via targeting Toll-like receptor.
    Li C; Zhao M; Zhang C; Zhang W; Zhao X; Duan X; Xu W
    Dev Comp Immunol; 2016 Dec; 65():377-381. PubMed ID: 27545641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 4-Hydroxyphenylpyruvate dioxygenase from sea cucumber Apostichopus japonicus negatively regulates reactive oxygen species production.
    Liang W; Zhang W; Lv Z; Li C
    Fish Shellfish Immunol; 2020 Jun; 101():261-268. PubMed ID: 32276034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent proteomics response of Apostichopus japonicus suffering from skin ulceration syndrome and pathogen infection.
    Lv Z; Guo M; Li C; Shao Y; Zhao X; Zhang W
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Jun; 30():196-205. PubMed ID: 30897459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.