BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38663553)

  • 1. Ex vivo method for rapid quantification of post traumatic brain injury lesion volumes using ultrasound.
    Clark IH; Natera D; Grande AW; Low WC
    J Neurosci Methods; 2024 Jul; 407():110140. PubMed ID: 38663553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Web Application for Quantification of Traumatic Brain Injury-Induced Cortical Lesions in Adult Mice.
    Ciszek R; Andrade P; Tapiala J; Pitkänen A; Ndode-Ekane XE
    Neuroinformatics; 2020 Apr; 18(2):307-317. PubMed ID: 31802356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel antagonist of p75NTR reduces peripheral expansion and CNS trafficking of pro-inflammatory monocytes and spares function after traumatic brain injury.
    Lee S; Mattingly A; Lin A; Sacramento J; Mannent L; Castel MN; Canolle B; Delbary-Gossart S; Ferzaz B; Morganti JM; Rosi S; Ferguson AR; Manley GT; Bresnahan JC; Beattie MS
    J Neuroinflammation; 2016 Apr; 13(1):88. PubMed ID: 27102880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-Assisted Measurement of Traumatic Brain Hemorrhage Volume Is More Predictive of Functional Outcome and Mortality than Standard ABC/2 Method: An Analysis of Computed Tomography Imaging Data from the Progesterone for Traumatic Brain Injury Experimental Clinical Treatment Phase-III Trial.
    Leary OP; Merck LH; Yeatts SD; Pan I; Liu DD; Harder TJ; Jung S; Collins S; Braileanu M; Gokaslan ZL; Allen JW; Wright DW; Merck D
    J Neurotrauma; 2021 Mar; 38(5):604-615. PubMed ID: 33191851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury.
    Cole JH; Jolly A; de Simoni S; Bourke N; Patel MC; Scott G; Sharp DJ
    Brain; 2018 Mar; 141(3):822-836. PubMed ID: 29309542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traumatic hemorrhagic brain injury: impact of location and resorption on cognitive outcome.
    Martin RM; Wright MJ; Lutkenhoff ES; Ellingson BM; Van Horn JD; Tubi M; Alger JR; McArthur DL; Vespa PM
    J Neurosurg; 2017 Mar; 126(3):796-804. PubMed ID: 27231979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute and chronic stage adaptations of vascular architecture and cerebral blood flow in a mouse model of TBI.
    Steinman J; Cahill LS; Koletar MM; Stefanovic B; Sled JG
    Neuroimage; 2019 Nov; 202():116101. PubMed ID: 31425794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inducing Post-Traumatic Epilepsy in a Mouse Model of Repetitive Diffuse Traumatic Brain Injury.
    Shandra O; Robel S
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32090988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability and uncertainty in the rodent controlled cortical impact model of traumatic brain injury.
    Sellappan P; Cote J; Kreth PA; Schepkin VD; Darkazalli A; Morris DR; Alvi FS; Levenson CW
    J Neurosci Methods; 2019 Jan; 312():37-42. PubMed ID: 30423350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DRα1-MOG-35-55 treatment reduces lesion volumes and improves neurological deficits after traumatic brain injury.
    Yang L; Liu Z; Ren H; Zhang L; Gao S; Ren L; Chai Z; Meza-Romero R; Benedek G; Vandenbark AA; Offner H; Li M
    Metab Brain Dis; 2017 Oct; 32(5):1395-1402. PubMed ID: 28303450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-traumatic administration of the p53 inactivator pifithrin-α oxygen analogue reduces hippocampal neuronal loss and improves cognitive deficits after experimental traumatic brain injury.
    Yang LY; Greig NH; Huang YN; Hsieh TH; Tweedie D; Yu QS; Hoffer BJ; Luo Y; Kao YC; Wang JY
    Neurobiol Dis; 2016 Dec; 96():216-226. PubMed ID: 27553877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute colitis during chronic experimental traumatic brain injury in mice induces dysautonomia and persistent extraintestinal, systemic, and CNS inflammation with exacerbated neurological deficits.
    Hanscom M; Loane DJ; Aubretch T; Leser J; Molesworth K; Hedgekar N; Ritzel RM; Abulwerdi G; Shea-Donohue T; Faden AI
    J Neuroinflammation; 2021 Jan; 18(1):24. PubMed ID: 33461596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arterial Spin Labeling Reveals Elevated Cerebral Blood Flow with Distinct Clusters of Hypo- and Hyperperfusion after Traumatic Brain Injury.
    Xu L; Ware JB; Kim JJ; Shahim P; Silverman E; Magdamo B; Dabrowski C; Wesley L; Le MD; Morrison J; Zamore H; Lynch CE; Petrov D; Chen HI; Schuster J; Diaz-Arrastia R; Sandsmark DK
    J Neurotrauma; 2021 Sep; 38(18):2538-2548. PubMed ID: 34115539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harmonization of pipeline for preclinical multicenter MRI biomarker discovery in a rat model of post-traumatic epileptogenesis.
    Immonen R; Smith G; Brady RD; Wright D; Johnston L; Harris NG; Manninen E; Salo R; Branch C; Duncan D; Cabeen R; Ndode-Ekane XE; Gomez CS; Casillas-Espinosa PM; Ali I; Shultz SR; Andrade P; Puhakka N; Staba RJ; O'Brien TJ; Toga AW; Pitkänen A; Gröhn O
    Epilepsy Res; 2019 Feb; 150():46-57. PubMed ID: 30641351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optic tract injury after closed head traumatic brain injury in mice: A model of indirect traumatic optic neuropathy.
    Evanson NK; Guilhaume-Correa F; Herman JP; Goodman MD
    PLoS One; 2018; 13(5):e0197346. PubMed ID: 29746557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative T2 mapping as a potential marker for the initial assessment of the severity of damage after traumatic brain injury in rat.
    Kharatishvili I; Sierra A; Immonen RJ; Gröhn OH; Pitkänen A
    Exp Neurol; 2009 May; 217(1):154-64. PubMed ID: 19416663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microglial Depletion with CSF1R Inhibitor During Chronic Phase of Experimental Traumatic Brain Injury Reduces Neurodegeneration and Neurological Deficits.
    Henry RJ; Ritzel RM; Barrett JP; Doran SJ; Jiao Y; Leach JB; Szeto GL; Wu J; Stoica BA; Faden AI; Loane DJ
    J Neurosci; 2020 Apr; 40(14):2960-2974. PubMed ID: 32094203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detecting axonal injury in individual patients after traumatic brain injury.
    Jolly AE; Bălăeţ M; Azor A; Friedland D; Sandrone S; Graham NSN; Zimmerman K; Sharp DJ
    Brain; 2021 Feb; 144(1):92-113. PubMed ID: 33257929
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic quantification of lesion volume following experimental traumatic brain injury in the rat.
    Perri BR; Smith DH; Murai H; Sinson G; Saatman KE; Raghupathi R; Bartus RT; McIntosh TK
    J Neurotrauma; 1997 Jan; 14(1):15-22. PubMed ID: 9048307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interleukin-1 Receptor in Seizure Susceptibility after Traumatic Injury to the Pediatric Brain.
    Semple BD; O'Brien TJ; Gimlin K; Wright DK; Kim SE; Casillas-Espinosa PM; Webster KM; Petrou S; Noble-Haeusslein LJ
    J Neurosci; 2017 Aug; 37(33):7864-7877. PubMed ID: 28724747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.