These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38663631)

  • 21. Toward a Better Understanding of the Contribution of Wastewater Treatment Plants to Microplastic Pollution in Receiving Waterways.
    Vercauteren M; Semmouri I; Van Acker E; Pequeur E; Janssen CR; Asselman J
    Environ Toxicol Chem; 2023 Mar; 42(3):642-654. PubMed ID: 36524859
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microplastics removal and characteristics of constructed wetlands WWTPs in rural area of Changsha, China: A different situation from urban WWTPs.
    Long Y; Zhou Z; Yin L; Wen X; Xiao R; Du L; Zhu L; Liu R; Xu Q; Li H; Nan R; Yan S
    Sci Total Environ; 2022 Mar; 811():152352. PubMed ID: 34915001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology.
    Lares M; Ncibi MC; Sillanpää M; Sillanpää M
    Water Res; 2018 Apr; 133():236-246. PubMed ID: 29407704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microplastics removal from a primary settler tank in a wastewater treatment plant and estimations of contamination onto European agricultural land via sewage sludge recycling.
    Lofty J; Muhawenimana V; Wilson CAME; Ouro P
    Environ Pollut; 2022 Jul; 304():119198. PubMed ID: 35341817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review of microplastics in wastewater treatment plants in Türkiye: Characteristics, removal efficiency, mitigation strategies for microplastic pollution and future perspective.
    Acarer Arat S
    Water Sci Technol; 2024 Apr; 89(7):1771-1786. PubMed ID: 38619902
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nano and microplastics occurrence in wastewater treatment plants: A comprehensive understanding of microplastics fragmentation and their removal.
    Monira S; Roychand R; Hai FI; Bhuiyan M; Dhar BR; Pramanik BK
    Chemosphere; 2023 Sep; 334():139011. PubMed ID: 37230299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microplastics in sewage sludge: Distribution, toxicity, identification methods, and engineered technologies.
    Nguyen MK; Hadi M; Lin C; Nguyen HL; Thai VB; Hoang HG; Vo DN; Tran HT
    Chemosphere; 2022 Dec; 308(Pt 3):136455. PubMed ID: 36116626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of microplastics in sludge from five wastewater treatment plants in Nanjing, China.
    Yuan F; Zhao H; Sun H; Sun Y; Zhao J; Xia T
    J Environ Manage; 2022 Jan; 301():113793. PubMed ID: 34601347
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant.
    Raju S; Carbery M; Kuttykattil A; Senthirajah K; Lundmark A; Rogers Z; Scb S; Evans G; Palanisami T
    Water Res; 2020 Apr; 173():115549. PubMed ID: 32086069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment and accumulation of microplastics in sewage sludge at wastewater treatment plants located in Cádiz, Spain.
    Franco AA; Martín-García AP; Egea-Corbacho A; Arellano JM; Albendín G; Rodríguez-Barroso R; Quiroga JM; Coello MD
    Environ Pollut; 2023 Jan; 317():120689. PubMed ID: 36435286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Occurrence, characteristics, and removal of microplastics in wastewater treatment plants located on the Moroccan Atlantic: The case of Agadir metropolis.
    Hajji S; Ben-Haddad M; Abelouah MR; De-la-Torre GE; Alla AA
    Sci Total Environ; 2023 Mar; 862():160815. PubMed ID: 36502989
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Occurrence and distribution of microplastics in domestic, industrial, agricultural and aquacultural wastewater sources: A case study in Changzhou, China.
    Wang F; Wang B; Duan L; Zhang Y; Zhou Y; Sui Q; Xu D; Qu H; Yu G
    Water Res; 2020 Sep; 182():115956. PubMed ID: 32622124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Occurrence, identification, and discharge of microplastics from effluent and sludge of the largest WWTP in Iran-South of Tehran.
    Oveisy N; Rafiee M; Rahmatpour A; Nejad AS; Hashemi M; Eslami A
    Water Environ Res; 2022 Aug; 94(8):e10765. PubMed ID: 35971304
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Abundance and characteristics of microplastics in an urban wastewater treatment plant in Turkey.
    Üstün GE; Bozdaş K; Can T
    Environ Pollut; 2022 Oct; 310():119890. PubMed ID: 35932899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microplastics in wastewater treatment plants: Sources, properties, removal efficiency, removal mechanisms, and interactions with pollutants.
    Acarer S
    Water Sci Technol; 2023 Feb; 87(3):685-710. PubMed ID: 36789712
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microplastic emission trends in Turkish primary and secondary municipal wastewater treatment plant effluents discharged into the Sea of Marmara and Black Sea.
    Akdemir T; Gedik K
    Environ Res; 2023 Aug; 231(Pt 2):116188. PubMed ID: 37230218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microplastics composition and load from three wastewater treatment plants discharging into Mersin Bay, north eastern Mediterranean Sea.
    Akarsu C; Kumbur H; Gökdağ K; Kıdeyş AE; Sanchez-Vidal A
    Mar Pollut Bull; 2020 Jan; 150():110776. PubMed ID: 31785845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Abundance and removal characteristics of microplastics at a wastewater treatment plant in Zhengzhou.
    Ren P; Dou M; Wang C; Li G; Jia R
    Environ Sci Pollut Res Int; 2020 Oct; 27(29):36295-36305. PubMed ID: 32556980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Between source and sea: The role of wastewater treatment in reducing marine microplastics.
    Freeman S; Booth AM; Sabbah I; Tiller R; Dierking J; Klun K; Rotter A; Ben-David E; Javidpour J; Angel DL
    J Environ Manage; 2020 Jul; 266():110642. PubMed ID: 32392134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year.
    Conley K; Clum A; Deepe J; Lane H; Beckingham B
    Water Res X; 2019 Apr; 3():100030. PubMed ID: 31194047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.