BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 38664383)

  • 1. Memory-electroluminescence for multiple action-potentials combination in bio-inspired afferent nerves.
    Wang K; Liao Y; Li W; Li J; Su H; Chen R; Park JH; Zhang Y; Zhou X; Wu C; Liu Z; Guo T; Kim TW
    Nat Commun; 2024 Apr; 15(1):3505. PubMed ID: 38664383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves.
    Tan H; Tao Q; Pande I; Majumdar S; Liu F; Zhou Y; Persson POÅ; Rosen J; van Dijken S
    Nat Commun; 2020 Mar; 11(1):1369. PubMed ID: 32170075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-Emitting Memristors for Optoelectronic Artificial Efferent Nerve.
    Zhu Y; Wu C; Xu Z; Liu Y; Hu H; Guo T; Kim TW; Chai Y; Li F
    Nano Lett; 2021 Jul; 21(14):6087-6094. PubMed ID: 34269052
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force sensor in simulated skin and neural model mimic tactile SAI afferent spiking response to ramp and hold stimuli.
    Kim EK; Wellnitz SA; Bourdon SM; Lumpkin EA; Gerling GJ
    J Neuroeng Rehabil; 2012 Jul; 9():45. PubMed ID: 22824523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Like Spiking Neural P Systems With Request Rules.
    Pan L; Wu T; Su Y; Vasilakos AV
    IEEE Trans Nanobioscience; 2017 Sep; 16(6):513-522. PubMed ID: 28682262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Demonstration of Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses.
    Nandakumar SR; Boybat I; Le Gallo M; Eleftheriou E; Sebastian A; Rajendran B
    Sci Rep; 2020 May; 10(1):8080. PubMed ID: 32415108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perceived tactile intensity at a fixed primary afferent spike rate varies with the temporal pattern of spikes.
    Sharma D; Ng KKW; Birznieks I; Vickery RM
    J Neurophysiol; 2022 Oct; 128(4):1074-1084. PubMed ID: 36102518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spiking neural network for recognizing spatiotemporal sequences of spikes.
    Jin DZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021905. PubMed ID: 14995489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different sensitivity of action potential generation to the rate of depolarization in vagal afferent A-fiber versus C-fiber neurons.
    Sun H
    J Neurophysiol; 2021 May; 125(5):2000-2012. PubMed ID: 33881911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated In-Sensor Computing Optoelectronic Device for Environment-Adaptable Artificial Retina Perception Application.
    Meng J; Wang T; Zhu H; Ji L; Bao W; Zhou P; Chen L; Sun QQ; Zhang DW
    Nano Lett; 2022 Jan; 22(1):81-89. PubMed ID: 34962129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ion channels in airway afferent neurons.
    Carr MJ; Undem BJ
    Respir Physiol; 2001 Mar; 125(1-2):83-97. PubMed ID: 11240154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance.
    Lu SM; Guido W; Sherman SM
    J Neurophysiol; 1992 Dec; 68(6):2185-98. PubMed ID: 1337104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological evidence for afferent nerve fibers in human ventral roots.
    Phillips LH; Park TS; Shaffrey ME; Shaffrey CL
    Muscle Nerve; 2000 Mar; 23(3):410-5. PubMed ID: 10679718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Centrifugal gastric vagal afferent unit activities: another source of gastric "efferent" control.
    Wei JY; Adelson DW; Taché Y; Go VL
    J Auton Nerv Syst; 1995 Apr; 52(2-3):83-97. PubMed ID: 7615902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From sensors to spikes: evolving receptive fields to enhance sensorimotor information in a robot-arm.
    Luque NR; Garrido JA; Ralli J; Laredo JJ; Ros E
    Int J Neural Syst; 2012 Aug; 22(4):1250013. PubMed ID: 22830963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extra spike formation in sensory neurons and the disruption of afferent spike patterning.
    Amir R; Devor M
    Biophys J; 2003 Apr; 84(4):2700-8. PubMed ID: 12668478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unsupervised learning of visual features through spike timing dependent plasticity.
    Masquelier T; Thorpe SJ
    PLoS Comput Biol; 2007 Feb; 3(2):e31. PubMed ID: 17305422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The characteristics of spontaneous and evoked action potentials recorded from the rabbit's uterine nerves.
    Bower EA
    J Physiol; 1966 Apr; 183(3):730-47. PubMed ID: 5950684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat.
    Enríquez-Denton M; Nielsen J; Perreault MC; Morita H; Petersen N; Hultborn H
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):623-37. PubMed ID: 10922013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired optical structures for enhancing luminescence.
    Zhang Z; Vogelbacher F; Song Y; Tian Y; Li M
    Exploration (Beijing); 2023 Aug; 3(4):20220052. PubMed ID: 37933238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.