These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 38664394)

  • 1. Deep learning the cis-regulatory code for gene expression in selected model plants.
    Peleke FF; Zumkeller SM; Gültas M; Schmitt A; Szymański J
    Nat Commun; 2024 Apr; 15(1):3488. PubMed ID: 38664394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of plant pre-microRNAs and their microRNAs in genome-scale sequences using structure-sequence features and support vector machine.
    Meng J; Liu D; Sun C; Luan Y
    BMC Bioinformatics; 2014 Dec; 15(1):423. PubMed ID: 25547126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Conservation of
    Lieberman-Lazarovich M; Yahav C; Israeli A; Efroni I
    Plant Cell; 2019 Nov; 31(11):2559-2572. PubMed ID: 31467248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CATchUP: A Web Database for Spatiotemporally Regulated Genes.
    Nakamura Y; Kudo T; Terashima S; Saito M; Nambara E; Yano K
    Plant Cell Physiol; 2017 Jan; 58(1):e3. PubMed ID: 28013273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extreme restructuring of cis-regulatory regions controlling a deeply conserved plant stem cell regulator.
    Ciren D; Zebell S; Lippman ZB
    PLoS Genet; 2024 Mar; 20(3):e1011174. PubMed ID: 38437180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in shoot Na+ accumulation between two tomato species are due to differences in ion affinity of HKT1;2.
    Almeida P; de Boer GJ; de Boer AH
    J Plant Physiol; 2014 Mar; 171(6):438-47. PubMed ID: 24594396
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved pleiotropy of an ancient plant homeobox gene uncovered by cis-regulatory dissection.
    Hendelman A; Zebell S; Rodriguez-Leal D; Dukler N; Robitaille G; Wu X; Kostyun J; Tal L; Wang P; Bartlett ME; Eshed Y; Efroni I; Lippman ZB
    Cell; 2021 Apr; 184(7):1724-1739.e16. PubMed ID: 33667348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide cis-decoding for expression design in tomato using cistrome data and explainable deep learning.
    Akagi T; Masuda K; Kuwada E; Takeshita K; Kawakatsu T; Ariizumi T; Kubo Y; Ushijima K; Uchida S
    Plant Cell; 2022 May; 34(6):2174-2187. PubMed ID: 35258588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extreme restructuring of
    Ciren D; Zebell S; Lippman ZB
    bioRxiv; 2023 Dec; ():. PubMed ID: 38187729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of PIC1 (permease in chloroplasts 1) gene's role in iron homeostasis: bioinformatics and expression analyses in tomato and sorghum.
    Filiz E; Aydın Akbudak M
    Biometals; 2020 Feb; 33(1):29-44. PubMed ID: 31802376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide survey and expression analysis of NIN-like Protein (NLP) genes reveals its potential roles in the response to nitrate signaling in tomato.
    Liu M; Zhi X; Wang Y; Wang Y
    BMC Plant Biol; 2021 Jul; 21(1):347. PubMed ID: 34301191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kingdom-wide analysis of the evolution of the plant type III polyketide synthase superfamily.
    Naake T; Maeda HA; Proost S; Tohge T; Fernie AR
    Plant Physiol; 2021 Apr; 185(3):857-875. PubMed ID: 33793871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar.
    Zhang X; Zong J; Liu J; Yin J; Zhang D
    J Integr Plant Biol; 2010 Nov; 52(11):1016-26. PubMed ID: 20977659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide analysis of histone modifiers in tomato: gaining an insight into their developmental roles.
    Aiese Cigliano R; Sanseverino W; Cremona G; Ercolano MR; Conicella C; Consiglio FM
    BMC Genomics; 2013 Jan; 14():57. PubMed ID: 23356725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterns and evolution of ACGT repeat cis-element landscape across four plant genomes.
    Mehrotra R; Sethi S; Zutshi I; Bhalothia P; Mehrotra S
    BMC Genomics; 2013 Mar; 14():203. PubMed ID: 23530833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L.) Moench) and related model species.
    Woldesemayat AA; Modise DM; Gemeildien J; Ndimba BK; Christoffels A
    PLoS One; 2018; 13(3):e0192678. PubMed ID: 29590108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrion-encoded circular RNAs are widespread and translatable in plants.
    Liao X; Li XJ; Zheng GT; Chang FR; Fang L; Yu H; Huang J; Zhang YF
    Plant Physiol; 2022 Jun; 189(3):1482-1500. PubMed ID: 35325205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cis-regulatory signatures of orthologous stress-associated bZIP transcription factors from rice, sorghum and Arabidopsis based on phylogenetic footprints.
    Xu F; Park MR; Kitazumi A; Herath V; Mohanty B; Yun SJ; de los Reyes BG
    BMC Genomics; 2012 Sep; 13():497. PubMed ID: 22992304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interspecific analysis of diurnal gene regulation in panicoid grasses identifies known and novel regulatory motifs.
    Lai X; Bendix C; Yan L; Zhang Y; Schnable JC; Harmon FG
    BMC Genomics; 2020 Jun; 21(1):428. PubMed ID: 32586356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The LEA gene family in tomato and its wild relatives: genome-wide identification, structural characterization, expression profiling, and role of SlLEA6 in drought stress.
    Jia C; Guo B; Wang B; Li X; Yang T; Li N; Wang J; Yu Q
    BMC Plant Biol; 2022 Dec; 22(1):596. PubMed ID: 36536303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.