These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 38664602)
1. Gene expression analysis of drought tolerance and cuticular wax biosynthesis in diploid and tetraploid induced wallflowers. Fakhrzad F; Jowkar A BMC Plant Biol; 2024 Apr; 24(1):330. PubMed ID: 38664602 [TBL] [Abstract][Full Text] [Related]
2. Yellow nutsedge WRI4-like gene improves drought tolerance in Arabidopsis thaliana by promoting cuticular wax biosynthesis. Cheng C; Hu S; Han Y; Xia D; Huang BL; Wu W; Hussain J; Zhang X; Huang B BMC Plant Biol; 2020 Oct; 20(1):498. PubMed ID: 33129252 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Glossy1-homologous genes in rice involved in leaf wax accumulation and drought resistance. Islam MA; Du H; Ning J; Ye H; Xiong L Plant Mol Biol; 2009 Jul; 70(4):443-56. PubMed ID: 19322663 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation. Lee SB; Kim H; Kim RJ; Suh MC Plant Cell Rep; 2014 Sep; 33(9):1535-46. PubMed ID: 24880908 [TBL] [Abstract][Full Text] [Related]
5. The SHINE clade of AP2 domain transcription factors activates wax biosynthesis, alters cuticle properties, and confers drought tolerance when overexpressed in Arabidopsis. Aharoni A; Dixit S; Jetter R; Thoenes E; van Arkel G; Pereira A Plant Cell; 2004 Sep; 16(9):2463-80. PubMed ID: 15319479 [TBL] [Abstract][Full Text] [Related]
6. Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering. Negin B; Hen-Avivi S; Almekias-Siegl E; Shachar L; Jander G; Aharoni A New Phytol; 2023 Mar; 237(5):1574-1589. PubMed ID: 36369885 [TBL] [Abstract][Full Text] [Related]
7. ZmEREB46, a maize ortholog of Arabidopsis WAX INDUCER1/SHINE1, is involved in the biosynthesis of leaf epicuticular very-long-chain waxes and drought tolerance. Yang Y; Shi J; Chen L; Xiao W; Yu J Plant Sci; 2022 Aug; 321():111256. PubMed ID: 35696901 [TBL] [Abstract][Full Text] [Related]
8. Rice OsGL1-6 is involved in leaf cuticular wax accumulation and drought resistance. Zhou L; Ni E; Yang J; Zhou H; Liang H; Li J; Jiang D; Wang Z; Liu Z; Zhuang C PLoS One; 2013; 8(5):e65139. PubMed ID: 23741473 [TBL] [Abstract][Full Text] [Related]
9. A combination of genome-wide association study and transcriptome analysis in leaf epidermis identifies candidate genes involved in cuticular wax biosynthesis in Brassica napus. Jin S; Zhang S; Liu Y; Jiang Y; Wang Y; Li J; Ni Y BMC Plant Biol; 2020 Oct; 20(1):458. PubMed ID: 33023503 [TBL] [Abstract][Full Text] [Related]
10. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Zhu L; Guo J; Zhu J; Zhou C Plant Physiol Biochem; 2014 Feb; 75():24-35. PubMed ID: 24361507 [TBL] [Abstract][Full Text] [Related]
11. MYB94 and MYB96 Additively Activate Cuticular Wax Biosynthesis in Arabidopsis. Lee SB; Kim HU; Suh MC Plant Cell Physiol; 2016 Nov; 57(11):2300-2311. PubMed ID: 27577115 [TBL] [Abstract][Full Text] [Related]
12. A novel dominant glossy mutation causes suppression of wax biosynthesis pathway and deficiency of cuticular wax in Brassica napus. Pu Y; Gao J; Guo Y; Liu T; Zhu L; Xu P; Yi B; Wen J; Tu J; Ma C; Fu T; Zou J; Shen J BMC Plant Biol; 2013 Dec; 13():215. PubMed ID: 24330756 [TBL] [Abstract][Full Text] [Related]
13. OsGL1-3 is involved in cuticular wax biosynthesis and tolerance to water deficit in rice. Zhou X; Li L; Xiang J; Gao G; Xu F; Liu A; Zhang X; Peng Y; Chen X; Wan X PLoS One; 2015; 10(1):e116676. PubMed ID: 25555239 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome and Physiological Analyses of a Navel Orange Mutant with Improved Drought Tolerance and Water Use Efficiency Caused by Increases of Cuticular Wax Accumulation and ROS Scavenging Capacity. Liang B; Wan S; Ma Q; Yang L; Hu W; Kuang L; Xie J; Liu D; Liu Y Int J Mol Sci; 2022 May; 23(10):. PubMed ID: 35628469 [TBL] [Abstract][Full Text] [Related]
15. Residual transpiration as a component of salinity stress tolerance mechanism: a case study for barley. Hasanuzzaman M; Davies NW; Shabala L; Zhou M; Brodribb TJ; Shabala S BMC Plant Biol; 2017 Jun; 17(1):107. PubMed ID: 28629324 [TBL] [Abstract][Full Text] [Related]
16. Induced accumulation of cuticular waxes enhances drought tolerance in Arabidopsis by changes in development of stomata. Yang J; Isabel Ordiz M; Jaworski JG; Beachy RN Plant Physiol Biochem; 2011 Dec; 49(12):1448-55. PubMed ID: 22078383 [TBL] [Abstract][Full Text] [Related]
17. A 3-Ketoacyl-CoA Synthase 10 ( Wang Y; Liu Y; Pan X; Wan Y; Li Z; Xie Z; Hu T; Yang P J Agric Food Chem; 2023 Oct; 71(40):14493-14504. PubMed ID: 37682587 [TBL] [Abstract][Full Text] [Related]
18. Poa pratensis ECERIFERUM1 (PpCER1) is involved in wax alkane biosynthesis and plant drought tolerance. Wang D; Ni Y; Liao L; Xiao Y; Guo Y Plant Physiol Biochem; 2021 Feb; 159():312-321. PubMed ID: 33421907 [TBL] [Abstract][Full Text] [Related]
19. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. Kim KS; Park SH; Jenks MA J Plant Physiol; 2007 Sep; 164(9):1134-43. PubMed ID: 16904233 [TBL] [Abstract][Full Text] [Related]