These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38664895)

  • 21. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.
    Kant K; Yu J; Priest C; Shapter JG; Losic D
    Analyst; 2014 Mar; 139(5):1134-40. PubMed ID: 24416759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal-Organic Framework-Decorated Nanochannel Electrode: Integration of Internal Nanoconfined Space and Outer Surface for Small-Molecule Sensing.
    Ma X; Li Y; Zhang J; Ma T; Zhang L; Chen Y; Ying Y; Fu Y
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27034-27045. PubMed ID: 37232292
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.
    Liu L; Li C; Ma J; Wu Y; Ni Z; Chen Y
    IET Nanobiotechnol; 2014 Dec; 8(4):247-56. PubMed ID: 25429504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Changes in morphology and ionic transport induced by ALD SiO₂ coating of nanoporous alumina membranes.
    Romero V; Vega V; García J; Zierold R; Nielsch K; Prida VM; Hernando B; Benavente J
    ACS Appl Mater Interfaces; 2013 May; 5(9):3556-64. PubMed ID: 23574388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Volume discrimination of nanoparticles via electrical trapping using nanopores.
    Arima A; Tsutsui M; Taniguchi M
    J Nanobiotechnology; 2019 Mar; 17(1):40. PubMed ID: 30871539
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interfacial interactions of glutamate, water and ions with carbon nanopore evaluated by molecular dynamics simulations.
    Cory SM; Liu Y; Glavinović MI
    Biochim Biophys Acta; 2007 Sep; 1768(9):2319-41. PubMed ID: 17631857
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport rectification in nanopores with outer membranes modified with surface charges and polyelectrolytes.
    Tagliazucchi M; Rabin Y; Szleifer I
    ACS Nano; 2013 Oct; 7(10):9085-97. PubMed ID: 24047263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic Effect of Bio-Inspired Nanochannels: Hydrophilic DNA Probes at Inner Wall and Hydrophobic Coating at Outer Surface for Highly Sensitive Detection.
    Liu L; Luo C; Zhang J; He X; Shen Y; Yan B; Huang Y; Xia F; Jiang L
    Small; 2022 Sep; 18(37):e2201925. PubMed ID: 35980948
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Accurate characterization of single track-etched, conical nanopores.
    Apel PY; Ramirez P; Blonskaya IV; Orelovitch OL; Sartowska BA
    Phys Chem Chem Phys; 2014 Aug; 16(29):15214-23. PubMed ID: 24939748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The influence of nanopore dimensions on the electrochemical properties of nanopore arrays studied by impedance spectroscopy.
    Kant K; Priest C; Shapter JG; Losic D
    Sensors (Basel); 2014 Nov; 14(11):21316-28. PubMed ID: 25393785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels.
    Lu J; Jiang Y; Yu P; Jiang W; Mao L
    Chem Asian J; 2022 May; 17(10):e202200158. PubMed ID: 35324076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microscopic Detection Analysis of Single Molecules in MoS
    Xiong M; Graf M; Athreya N; Radenovic A; Leburton JP
    ACS Nano; 2020 Nov; 14(11):16131-16139. PubMed ID: 33155815
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tunable Nanopore Arrays as the Basis for Ionic Circuits.
    Lucas RA; Siwy ZS
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56622-56631. PubMed ID: 33283510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Slit pores preferred over cylindrical pores for high selectivity in biomolecular filtration.
    Feinberg BJ; Hsiao JC; Park J; Zydney AL; Fissell WH; Roy S
    J Colloid Interface Sci; 2018 May; 517():176-181. PubMed ID: 29425954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing.
    Crick CR; Sze JY; Rosillo-Lopez M; Salzmann CG; Edel JB
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18188-94. PubMed ID: 26204996
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrophobic Gating and Spatial Confinement in Hierarchically Organized Block Copolymer-Nanopore Electrode Arrays for Electrochemical Biosensing of 4-Ethyl Phenol.
    Reitemeier J; Baek S; Bohn PW
    ACS Appl Mater Interfaces; 2023 Aug; 15(33):39707-39715. PubMed ID: 37579252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic reactivity of glucose oxidase confined in nanochannels.
    Yu J; Zhang Y; Liu S
    Biosens Bioelectron; 2014 May; 55():307-12. PubMed ID: 24412427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Revealing Ionic Signal Enhancement with Probe Grafting Density on the Outer Surface of Nanochannels.
    Liu T; Wu X; Xu H; Ma Q; Du Q; Yuan Q; Gao P; Xia F
    Anal Chem; 2021 Sep; 93(38):13054-13062. PubMed ID: 34519478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.