These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 38664992)

  • 1. Response stopping under conflict: The integrative role of representational dynamics associated with the insular cortex.
    Ghin F; Eggert E; Gholamipourbarogh N; Talebi N; Beste C
    Hum Brain Mapp; 2024 Apr; 45(6):e26643. PubMed ID: 38664992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural Architecture of Selective Stopping Strategies: Distinct Brain Activity Patterns Are Associated with Attentional Capture But Not with Outright Stopping.
    Sebastian A; Rössler K; Wibral M; Mobascher A; Lieb K; Jung P; Tüscher O
    J Neurosci; 2017 Oct; 37(40):9785-9794. PubMed ID: 28887387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages.
    Tatz JR; Soh C; Wessel JR
    J Neurosci; 2021 Oct; 41(42):8826-8838. PubMed ID: 34493541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The metacontrol of event segmentation-A neurophysiological and behavioral perspective.
    Zhou X; Ghorbani F; Roessner V; Hommel B; Prochnow A; Beste C
    Hum Brain Mapp; 2024 Aug; 45(11):e26727. PubMed ID: 39081074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differences in unity: The go/no-go and stop signal tasks rely on different mechanisms.
    Raud L; Westerhausen R; Dooley N; Huster RJ
    Neuroimage; 2020 Apr; 210():116582. PubMed ID: 31987997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for independent representational contents in inhibitory control subprocesses associated with frontoparietal cortices.
    Gholamipourbarogh N; Ghin F; Mückschel M; Frings C; Stock AK; Beste C
    Hum Brain Mapp; 2023 Feb; 44(3):1046-1061. PubMed ID: 36314869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stopping, goal-conflict, trait anxiety and frontal rhythmic power in the stop-signal task.
    Neo PS; Thurlow JK; McNaughton N
    Cogn Affect Behav Neurosci; 2011 Dec; 11(4):485-93. PubMed ID: 21647572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparatory activity of anterior insula predicts conflict errors: integrating convolutional neural networks and neural mass models.
    Kaboodvand N; Karimi H; Iravani B
    Sci Rep; 2024 Jul; 14(1):16682. PubMed ID: 39030222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural and behavioral correlates of selective stopping: Evidence for a different strategy adoption.
    Sánchez-Carmona AJ; Albert J; Hinojosa JA
    Neuroimage; 2016 Oct; 139():279-293. PubMed ID: 27355436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multivariate Pattern Analysis Techniques for Electroencephalography Data to Study Flanker Interference Effects.
    López-García D; Sobrado A; Peñalver JMG; Górriz JM; Ruz M
    Int J Neural Syst; 2020 Jul; 30(7):2050024. PubMed ID: 32496140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceptual Surprise Improves Action Stopping by Nonselectively Suppressing Motor Activity via a Neural Mechanism for Motor Inhibition.
    Dutra IC; Waller DA; Wessel JR
    J Neurosci; 2018 Feb; 38(6):1482-1492. PubMed ID: 29305533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visuomotor Correlates of Conflict Expectation in the Context of Motor Decisions.
    Derosiere G; Klein PA; Nozaradan S; Zénon A; Mouraux A; Duque J
    J Neurosci; 2018 Oct; 38(44):9486-9504. PubMed ID: 30201772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. fMRI-constrained source analysis reveals early top-down modulations of interference processing using a flanker task.
    Siemann J; Herrmann M; Galashan D
    Neuroimage; 2016 Aug; 136():45-56. PubMed ID: 27181762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Midfrontal neural dynamics distinguish between general control and inhibition-specific processes in the stopping of motor actions.
    Kaiser J; Simon NA; Sauseng P; Schütz-Bosbach S
    Sci Rep; 2019 Sep; 9(1):13054. PubMed ID: 31506505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory motor control based on complex stopping goals relies on the same brain network as simple stopping.
    Wessel JR; Aron AR
    Neuroimage; 2014 Dec; 103():225-234. PubMed ID: 25270603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Response competition and response inhibition during different choice-discrimination tasks: evidence from ERP measured inside MRI scanner.
    Gonzalez-Rosa JJ; Inuggi A; Blasi V; Cursi M; Annovazzi P; Comi G; Falini A; Leocani L
    Int J Psychophysiol; 2013 Jul; 89(1):37-47. PubMed ID: 23664841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Representational Similarity Analysis of Cognitive Control during Color-Word Stroop.
    Freund MC; Bugg JM; Braver TS
    J Neurosci; 2021 Sep; 41(35):7388-7402. PubMed ID: 34162756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking dynamic adjustments to decision making and performance monitoring processes in conflict tasks.
    Feuerriegel D; Jiwa M; Turner WF; Andrejević M; Hester R; Bode S
    Neuroimage; 2021 Sep; 238():118265. PubMed ID: 34146710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking visual gamma to task-related brain networks-a simultaneous EEG-fMRI study.
    Beldzik E; Domagalik A; Beres A; Marek T
    Psychophysiology; 2019 Dec; 56(12):e13462. PubMed ID: 31420884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural activity during attentional conflict predicts reduction in tinnitus perception following rTMS.
    James GA; Thostenson JD; Brown G; Carter G; Hayes H; Tripathi SP; Dobry DJ; Govindan RB; Dornhoffer JL; Williams DK; Kilts CD; Mennemeier MS
    Brain Stimul; 2017; 10(5):934-943. PubMed ID: 28629874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.