These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Water-Sintered Transient Nanocomposites Used as Electrical Interconnects for Dissolvable Consumer Electronics. Li J; Liu J; Lu W; Wu Z; Yu J; Wang B; Ma Z; Huo W; Huang X ACS Appl Mater Interfaces; 2021 Jul; 13(27):32136-32148. PubMed ID: 34225448 [TBL] [Abstract][Full Text] [Related]
4. Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation-Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles. Shou W; Mahajan BK; Ludwig B; Yu X; Staggs J; Huang X; Pan H Adv Mater; 2017 Jul; 29(26):. PubMed ID: 28436054 [TBL] [Abstract][Full Text] [Related]
5. Skin-Inspired Electronics: An Emerging Paradigm. Wang S; Oh JY; Xu J; Tran H; Bao Z Acc Chem Res; 2018 May; 51(5):1033-1045. PubMed ID: 29693379 [TBL] [Abstract][Full Text] [Related]
6. Poly(lactic acid)-Based Ink for Biodegradable Printed Electronics With Conductivity Enhanced through Solvent Aging. Atreya M; Dikshit K; Marinick G; Nielson J; Bruns C; Whiting GL ACS Appl Mater Interfaces; 2020 May; 12(20):23494-23501. PubMed ID: 32326695 [TBL] [Abstract][Full Text] [Related]
7. Room Temperature Electrochemical Sintering of Zn Microparticles and Its Use in Printable Conducting Inks for Bioresorbable Electronics. Lee YK; Kim J; Kim Y; Kwak JW; Yoon Y; Rogers JA Adv Mater; 2017 Oct; 29(38):. PubMed ID: 28833596 [TBL] [Abstract][Full Text] [Related]
8. Ultrahigh Conductivity and Superior Interfacial Adhesion of a Nanostructured, Photonic-Sintered Copper Membrane for Printed Flexible Hybrid Electronics. Kwon YT; Kim YS; Lee Y; Kwon S; Lim M; Song Y; Choa YH; Yeo WH ACS Appl Mater Interfaces; 2018 Dec; 10(50):44071-44079. PubMed ID: 30452228 [TBL] [Abstract][Full Text] [Related]
9. 3D printed electronics with nanomaterials. Słoma M Nanoscale; 2023 Mar; 15(12):5623-5648. PubMed ID: 36880539 [TBL] [Abstract][Full Text] [Related]
10. Large-Area Inkjet-Printed Flexible Hybrid Electrodes with Photonic Sintered Silver Grids/High Conductive Polymer. Kant C; Mahmood S; Seetharaman M; Katiyar M Small Methods; 2024 Jan; 8(1):e2300638. PubMed ID: 37727075 [TBL] [Abstract][Full Text] [Related]
11. Low-Thermal-Budget Photonic Processing of Highly Conductive Cu Interconnects Based on CuO Nanoinks: Potential for Flexible Printed Electronics. Rager MS; Aytug T; Veith GM; Joshi P ACS Appl Mater Interfaces; 2016 Jan; 8(3):2441-8. PubMed ID: 26720684 [TBL] [Abstract][Full Text] [Related]
12. Printed Smart Devices on Cellulose-Based Materials by means of Aerosol-Jet Printing and Photonic Curing. Serpelloni M; Cantù E; Borghetti M; Sardini E Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32033245 [TBL] [Abstract][Full Text] [Related]
13. Self-Organizing, Environmentally Stable, and Low-Cost Copper-Nickel Complex Inks for Printed Flexible Electronics. Li W; Li L; Li F; Kawakami K; Sun Q; Nakayama T; Liu X; Kanehara M; Zhang J; Minari T ACS Appl Mater Interfaces; 2022 Feb; 14(6):8146-8156. PubMed ID: 35104116 [TBL] [Abstract][Full Text] [Related]
14. Processing Techniques for Bioresorbable Nanoparticles in Fabricating Flexible Conductive Interconnects. Li J; Luo S; Liu J; Xu H; Huang X Materials (Basel); 2018 Jun; 11(7):. PubMed ID: 29958406 [TBL] [Abstract][Full Text] [Related]
15. Inkjet-printed sub-zero temperature sensor for real-time monitoring of cold environments. Soni S; Sathe P; Sarkar SK; Kushwaha A; Gupta D Int J Biol Macromol; 2024 Feb; 258(Pt 1):128774. PubMed ID: 38096934 [TBL] [Abstract][Full Text] [Related]
16. All-MXene-Printed RF Resonators as Wireless Plant Wearable Sensors for In Situ Ethylene Detection. Li X; Sun R; Pan J; Shi Z; Lv J; An Z; He Y; Chen Q; Han RPS; Zhang F; Lu Y; Liang H; Liu Q Small; 2023 Jun; 19(24):e2207889. PubMed ID: 36899491 [TBL] [Abstract][Full Text] [Related]
17. Silver Nanoparticles Based Ink with Moderate Sintering in Flexible and Printed Electronics. Mo L; Guo Z; Yang L; Zhang Q; Fang Y; Xin Z; Chen Z; Hu K; Han L; Li L Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31036787 [TBL] [Abstract][Full Text] [Related]
18. 3D printing of highly conductive silver architectures enabled to sinter at low temperatures. Kim JH; Lee S; Wajahat M; Ahn J; Pyo J; Chang WS; Seol SK Nanoscale; 2019 Oct; 11(38):17682-17688. PubMed ID: 31539002 [TBL] [Abstract][Full Text] [Related]
19. Photonic Sintering of Copper through the Controlled Reduction of Printed CuO Nanocrystals. Paglia F; Vak D; van Embden J; Chesman AS; Martucci A; Jasieniak JJ; Della Gaspera E ACS Appl Mater Interfaces; 2015 Nov; 7(45):25473-8. PubMed ID: 26503740 [TBL] [Abstract][Full Text] [Related]
20. Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Herbert R; Lim HR; Rigo B; Yeo WH Sci Adv; 2022 May; 8(19):eabm1175. PubMed ID: 35544557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]