These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38665266)

  • 1. Transformer-based de novo peptide sequencing for data-independent acquisition mass spectrometry.
    Ebrahimi S; Guo X
    Proc IEEE Int Symp Bioinformatics Bioeng; 2023 Dec; 2023():28-35. PubMed ID: 38665266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformer-based de novo peptide sequencing for data-independent acquisition mass spectrometry.
    Ebrahimi S; Guo X
    ArXiv; 2024 Jun; ():. PubMed ID: 38659639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry.
    Tran NH; Qiao R; Xin L; Chen X; Liu C; Zhang X; Shan B; Ghodsi A; Li M
    Nat Methods; 2019 Jan; 16(1):63-66. PubMed ID: 30573815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IDIA: An Integrative Signal Extractor for Data-Independent Acquisition Proteomics.
    Li J; Pan C; Guo X
    Proceedings (IEEE Int Conf Bioinformatics Biomed); 2022 Dec; 2022():266-269. PubMed ID: 37034305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PowerNovo: de novo peptide sequencing via tandem mass spectrometry using an ensemble of transformer and BERT models.
    Petrovskiy DV; Nikolsky KS; Kulikova LI; Rudnev VR; Butkova TV; Malsagova KA; Kopylov AT; Kaysheva AL
    Sci Rep; 2024 Jul; 14(1):15000. PubMed ID: 38951578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-to-sequence translation from mass spectra to peptides with a transformer model.
    Yilmaz M; Fondrie WE; Bittremieux W; Melendez CF; Nelson R; Ananth V; Oh S; Noble WS
    Nat Commun; 2024 Jul; 15(1):6427. PubMed ID: 39080256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate de novo peptide sequencing using fully convolutional neural networks.
    Liu K; Ye Y; Li S; Tang H
    Nat Commun; 2023 Dec; 14(1):7974. PubMed ID: 38042873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive evaluation of peptide de novo sequencing tools for monoclonal antibody assembly.
    Beslic D; Tscheuschner G; Renard BY; Weller MG; Muth T
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36545804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive Immunopeptidomics by Leveraging Available Large-Scale Multi-HLA Spectral Libraries, Data-Independent Acquisition, and MS/MS Prediction.
    Pak H; Michaux J; Huber F; Chong C; Stevenson BJ; Müller M; Coukos G; Bassani-Sternberg M
    Mol Cell Proteomics; 2021; 20():100080. PubMed ID: 33845167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SWPepNovo: An Efficient De Novo Peptide Sequencing Tool for Large-scale MS/MS Spectra Analysis.
    Li C; Li K; Li K; Xie X; Lin F
    Int J Biol Sci; 2019; 15(9):1787-1801. PubMed ID: 31523183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-Tri: a deep neural network for scoring the similarity between predicted and measured spectra improves peptide identification of DIA data.
    Song J; Yu C
    Bioinformatics; 2022 Mar; 38(6):1525-1531. PubMed ID: 34999750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technical advances in proteomics: new developments in data-independent acquisition.
    Hu A; Noble WS; Wolf-Yadlin A
    F1000Res; 2016; 5():. PubMed ID: 27092249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acquisition and Analysis of DIA-Based Proteomic Data: A Comprehensive Survey in 2023.
    Lou R; Shui W
    Mol Cell Proteomics; 2024 Feb; 23(2):100712. PubMed ID: 38182042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional de novo peptide sequencing using a transformer model.
    Lee S; Kim H
    PLoS Comput Biol; 2024 Feb; 20(2):e1011892. PubMed ID: 38416757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for Digestion Enzyme Bias in Casanovo.
    Melendez C; Sanders J; Yilmaz M; Bittremieux W; Fondrie WE; Oh S; Noble WS
    J Proteome Res; 2024 Oct; 23(10):4761-4769. PubMed ID: 39213590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in data-independent acquisition mass spectrometry towards comprehensive digital proteome landscape.
    Kitata RB; Yang JC; Chen YJ
    Mass Spectrom Rev; 2023; 42(6):2324-2348. PubMed ID: 35645145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for peptide identification from metaproteomics datasets.
    Feng S; Sterzenbach R; Guo X
    J Proteomics; 2021 Sep; 247():104316. PubMed ID: 34246788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concomitant investigation of crustacean amphipods lipidome and metabolome during the molting cycle by Zeno SWATH data-independent acquisition coupled with electron activated dissociation and machine learning.
    Brunet TA; Clément Y; Calabrese V; Lemoine J; Geffard O; Chaumot A; Degli-Esposti D; Salvador A; Ayciriex S
    Anal Chim Acta; 2024 May; 1304():342533. PubMed ID: 38637034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving protein and proteome coverage through data-independent multiplexed peptide fragmentation.
    Blackburn K; Mbeunkui F; Mitra SK; Mentzel T; Goshe MB
    J Proteome Res; 2010 Jul; 9(7):3621-37. PubMed ID: 20450226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplexed and data-independent tandem mass spectrometry for global proteome profiling.
    Chapman JD; Goodlett DR; Masselon CD
    Mass Spectrom Rev; 2014; 33(6):452-70. PubMed ID: 24281846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.