These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38665487)

  • 1. Linear indium atom chains at graphene edges.
    Elibol K; Susi T; Mangler C; Eder D; Meyer JC; Kotakoski J; Hobbs RG; van Aken PA; Bayer BC
    NPJ 2D Mater Appl; 2023; 7(1):2. PubMed ID: 38665487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From zigzag to armchair: the energetic stability, electronic and magnetic properties of chiral graphene nanoribbons with hydrogen-terminated edges.
    Sun L; Wei P; Wei J; Sanvito S; Hou S
    J Phys Condens Matter; 2011 Oct; 23(42):425301. PubMed ID: 21969127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tip Growth of Quasi-Metallic Bilayer Graphene Nanoribbons with Armchair Chirality.
    Lou S; Lyu B; Chen J; Zhou X; Jiang W; Qiu L; Shen P; Ma S; Zhang Z; Xie Y; Wu Z; Chen Y; Xu K; Liang Q; Watanabe K; Taniguchi T; Xian L; Zhang G; Ouyang W; Ding F; Shi Z
    Nano Lett; 2024 Jan; 24(1):156-164. PubMed ID: 38147652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating atomic structure and transport in suspended graphene nanoribbons.
    Qi ZJ; Rodríguez-Manzo JA; Botello-Méndez AR; Hong SJ; Stach EA; Park YW; Charlier JC; Drndić M; Johnson AT
    Nano Lett; 2014 Aug; 14(8):4238-44. PubMed ID: 24954396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimentally engineering the edge termination of graphene nanoribbons.
    Zhang X; Yazyev OV; Feng J; Xie L; Tao C; Chen YC; Jiao L; Pedramrazi Z; Zettl A; Louie SG; Dai H; Crommie MF
    ACS Nano; 2013 Jan; 7(1):198-202. PubMed ID: 23194280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A guide to the design of electronic properties of graphene nanoribbons.
    Yazyev OV
    Acc Chem Res; 2013 Oct; 46(10):2319-28. PubMed ID: 23282074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half metallicity in BC2)N nanoribbons: stability, electronic structures, and magnetism.
    Lai L; Lu J
    Nanoscale; 2011 Jun; 3(6):2583-8. PubMed ID: 21552611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled formation of sharp zigzag and armchair edges in graphitic nanoribbons.
    Jia X; Hofmann M; Meunier V; Sumpter BG; Campos-Delgado J; Romo-Herrera JM; Son H; Hsieh YP; Reina A; Kong J; Terrones M; Dresselhaus MS
    Science; 2009 Mar; 323(5922):1701-5. PubMed ID: 19325109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size, structure, and helical twist of graphene nanoribbons controlled by confinement in carbon nanotubes.
    Chamberlain TW; Biskupek J; Rance GA; Chuvilin A; Alexander TJ; Bichoutskaia E; Kaiser U; Khlobystov AN
    ACS Nano; 2012 May; 6(5):3943-53. PubMed ID: 22483078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise Structural Regulation and Band-Gap Engineering of Curved Graphene Nanoribbons.
    Niu W; Ma J; Feng X
    Acc Chem Res; 2022 Dec; 55(23):3322-3333. PubMed ID: 36378659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-Surface Synthesis of Edge-Extended Zigzag Graphene Nanoribbons.
    Kinikar A; Xu X; Giovannantonio MD; Gröning O; Eimre K; Pignedoli CA; Müllen K; Narita A; Ruffieux P; Fasel R
    Adv Mater; 2023 Nov; 35(48):e2306311. PubMed ID: 37795919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A molecular simulation analysis of producing monatomic carbon chains by stretching ultranarrow graphene nanoribbons.
    Qi Z; Zhao F; Zhou X; Sun Z; Park HS; Wu H
    Nanotechnology; 2010 Jul; 21(26):265702. PubMed ID: 20522927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of graphene nanoribbons under low-voltage electron irradiation.
    Zhu W; Wang H; Yang W
    Nanoscale; 2012 Aug; 4(15):4555-61. PubMed ID: 22699261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges.
    Borin Barin G; Di Giovannantonio M; Lohr TG; Mishra S; Kinikar A; Perrin ML; Overbeck J; Calame M; Feng X; Fasel R; Ruffieux P
    Nanoscale; 2023 Oct; 15(41):16766-16774. PubMed ID: 37818609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene nanoribbons from unzipped carbon nanotubes: atomic structures, Raman spectroscopy, and electrical properties.
    Xie L; Wang H; Jin C; Wang X; Jiao L; Suenaga K; Dai H
    J Am Chem Soc; 2011 Jul; 133(27):10394-7. PubMed ID: 21678963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled metal atom chains on graphene nanoribbons.
    Choi SM; Jhi SH
    Phys Rev Lett; 2008 Dec; 101(26):266105. PubMed ID: 19437653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of
    Davoudiniya M; Yang B; Sanyal B
    Phys Chem Chem Phys; 2024 Jan; 26(3):1936-1949. PubMed ID: 38116600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of single-walled carbon nanotube via the interaction of graphene nanoribbons: ab initio density functional calculations.
    Du AJ; Smith SC; Lu GQ
    Nano Lett; 2007 Nov; 7(11):3349-54. PubMed ID: 17927259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons.
    Ritter KA; Lyding JW
    Nat Mater; 2009 Mar; 8(3):235-42. PubMed ID: 19219032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.