These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38665677)

  • 1. Controlling Electrodeposition in Nonplanar High Areal Capacity Battery Anodes via Charge Transport and Chemical Modulation.
    Tang T; Zheng JXK; Archer LA
    JACS Au; 2024 Apr; 4(4):1365-1373. PubMed ID: 38665677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly Reversible Zn Electrodeposition Enabled by an Artificial 3D Defect-Rich Conductive Scaffold.
    Hong C; Yang G; Wang C
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54088-54095. PubMed ID: 34748303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth.
    Jin S; Zhang D; Sharma A; Zhao Q; Shao Y; Chen P; Zheng J; Yin J; Deng Y; Biswal P; Archer LA
    Small; 2021 Aug; 17(33):e2101798. PubMed ID: 34228391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How Is Cycle Life of Three-Dimensional Zinc Metal Anodes with Carbon Fiber Backbones Affected by Depth of Discharge and Current Density in Zinc-Ion Batteries?
    Li J; Lin Q; Zheng Z; Cao L; Lv W; Chen Y
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12323-12330. PubMed ID: 35234443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Replacement Reaction Enabled Interdigitated Metal/Solid Electrolyte Architecture for Battery Cycling at 20 mA cm
    Cai Z; Ou Y; Zhang B; Wang J; Fu L; Wan M; Li G; Wang W; Wang L; Jiang J; Seh ZW; Hu E; Yang XQ; Cui Y; Sun Y
    J Am Chem Soc; 2021 Mar; 143(8):3143-3152. PubMed ID: 33595314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realizing Textured Zinc Metal Anodes through Regulating Electrodeposition Current for Aqueous Zinc Batteries.
    Yuan W; Nie X; Ma G; Liu M; Wang Y; Shen S; Zhang N
    Angew Chem Int Ed Engl; 2023 Mar; 62(10):e202218386. PubMed ID: 36637169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Universal Strike-Plating Strategy to Suppress Hydrogen Evolution for Improving Zinc Metal Reversibility.
    Yang Y; Zhu R; Wu G; Yang W; Yang H; Yoo E
    ACS Nano; 2024 Jul; 18(29):19003-19013. PubMed ID: 38984530
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Liang L; Hang L; Xie S; Men D; Jiang G; Chen Y
    Front Chem; 2022; 10():1037995. PubMed ID: 36311437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Porous Cu-Composites for Stable Li-Metal Battery Anodes.
    Park SK; Copic D; Zhao TZ; Rutkowska A; Wen B; Sanders K; He R; Kim HK; De Volder M
    ACS Nano; 2023 Aug; 17(15):14658-14666. PubMed ID: 37491197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible epitaxial electrodeposition of metals in battery anodes.
    Zheng J; Zhao Q; Tang T; Yin J; Quilty CD; Renderos GD; Liu X; Deng Y; Wang L; Bock DC; Jaye C; Zhang D; Takeuchi ES; Takeuchi KJ; Marschilok AC; Archer LA
    Science; 2019 Nov; 366(6465):645-648. PubMed ID: 31672899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphitized Carbon Fibers as Multifunctional 3D Current Collectors for High Areal Capacity Li Anodes.
    Zuo TT; Wu XW; Yang CP; Yin YX; Ye H; Li NW; Guo YG
    Adv Mater; 2017 Aug; 29(29):. PubMed ID: 28585339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible Na Plating/Stripping with High Areal Capacity Using an Electroconductive Liquid Electrolyte System.
    Jung Y; Lee S; Kim D; Park J; Kang SJ; Kim Y; Park JS; Lee WG
    ACS Appl Mater Interfaces; 2023 Sep; 15(37):43656-43666. PubMed ID: 37672801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Passivation Stabilizes Zn Anode.
    He P; Huang J
    Adv Mater; 2022 May; 34(18):e2109872. PubMed ID: 35263472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreased Electrically and Increased Ionically Conducting Scaffolds for Long-Life, High-Rate and Deep-Capacity Lithium-Metal Anodes.
    Li C; Wang J; Ye Q; Li P; Zhang K; Li J; Zhang Y; Ye L; Song T; Gao Y; Wang B; Peng H
    Small; 2024 Aug; 20(34):e2400570. PubMed ID: 38600895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface-Alloyed Nanoporous Zinc as Reversible and Stable Anodes for High-Performance Aqueous Zinc-Ion Battery.
    Meng H; Ran Q; Dai TY; Shi H; Zeng SP; Zhu YF; Wen Z; Zhang W; Lang XY; Zheng WT; Jiang Q
    Nanomicro Lett; 2022 Jun; 14(1):128. PubMed ID: 35699828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Reversible Zn Anodes through a Hydrophobic Interface Formed by Electrolyte Additive.
    Yan X; Tong Y; Liu Y; Li X; Qin Z; Wu Z; Hu W
    Nanomaterials (Basel); 2023 May; 13(9):. PubMed ID: 37177092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode.
    Xu S; McOwen DW; Wang C; Zhang L; Luo W; Chen C; Li Y; Gong Y; Dai J; Kuang Y; Yang C; Hamann TR; Wachsman ED; Hu L
    Nano Lett; 2018 Jun; 18(6):3926-3933. PubMed ID: 29787678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic-Assisted 3D Printing Zinc Powder Anode with 2D Conductive MOF/MXene Heterostructures for High-Stable Zinc-Organic Battery.
    Lu H; Hu J; Zhang K; Zhao J; Deng S; Li Y; Xu B; Pang H
    Adv Mater; 2024 Feb; 36(6):e2309753. PubMed ID: 37939787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.