BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38665895)

  • 1. Role of Mass Transport in Electrochemical CO
    Chan T; Kong CJ; King AJ; Babbe F; Prabhakar RR; Kubiak CP; Ager JW
    ACS Appl Energy Mater; 2024 Apr; 7(8):3091-3098. PubMed ID: 38665895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing effect of cobalt phthalocyanine dispersion on electrocatalytic reduction of CO
    Guo T; Wang X; Xing X; Fu Z; Ma C; Bedane AH; Kong L
    Environ Sci Pollut Res Int; 2023 Dec; 30(58):122755-122773. PubMed ID: 37978121
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Cheon S; Li J; Wang H
    J Am Chem Soc; 2024 Jun; 146(23):16348-16354. PubMed ID: 38806413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aqueous Electrochemical Reduction of Carbon Dioxide and Carbon Monoxide into Methanol with Cobalt Phthalocyanine.
    Boutin E; Wang M; Lin JC; Mesnage M; Mendoza D; Lassalle-Kaiser B; Hahn C; Jaramillo TF; Robert M
    Angew Chem Int Ed Engl; 2019 Nov; 58(45):16172-16176. PubMed ID: 31496012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Considering the Influence of Polymer-Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO
    Soucy TL; Dean WS; Zhou J; Rivera Cruz KE; McCrory CCL
    Acc Chem Res; 2022 Feb; 55(3):252-261. PubMed ID: 35044745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic Defect-Rich Graphene Coupled Cobalt Phthalocyanine for Robust Electrochemical Reduction of Carbon Dioxide.
    Liang F; Zhang J; Hu Z; Ma C; Ni W; Zhang Y; Zhang S
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25523-25532. PubMed ID: 34009943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insight into Impacts of π-π Assembly on Phthalocyanine Based Heterogeneous Molecular Electrocatalysis.
    Yang J; Zhang C; He R; Yao J; Wang J
    J Phys Chem Lett; 2024 May; 15(17):4705-4710. PubMed ID: 38656800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure Design Strategy for Molecularly Dispersed Cobalt Phthalocyanine and Efficient Mass Transport in CO
    Yue P; Zhong L; Deng Y; Li J; Zhang L; Ye D; Zhu X; Fu Q; Liao Q
    Small; 2023 Jun; 19(24):e2300051. PubMed ID: 36896999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amphiphilic Cobalt Phthalocyanine Boosts Carbon Dioxide Reduction.
    Zhou S; Zhang LJ; Zhu L; Tung CH; Wu LZ
    Adv Mater; 2023 Oct; 35(41):e2300923. PubMed ID: 37503663
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer coordination promotes selective CO
    Kramer WW; McCrory CCL
    Chem Sci; 2016 Apr; 7(4):2506-2515. PubMed ID: 28660020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Domino electroreduction of CO
    Wu Y; Jiang Z; Lu X; Liang Y; Wang H
    Nature; 2019 Nov; 575(7784):639-642. PubMed ID: 31776492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogenized Pyridine-Substituted Cobalt(II) Phthalocyanine Yields Reduction of CO
    De Riccardis A; Lee M; Kazantsev RV; Garza AJ; Zeng G; Larson DM; Clark EL; Lobaccaro P; Burroughs PWW; Bloise E; Ager JW; Bell AT; Head-Gordon M; Mele G; Toma FM
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5251-5258. PubMed ID: 31971360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical Study on the Electro-Reduction of Carbon Dioxide to Methanol Catalyzed by Cobalt Phthalocyanine.
    Shi LL; Li M; You B; Liao RZ
    Inorg Chem; 2022 Oct; 61(42):16549-16564. PubMed ID: 36216788
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Catalyst-Electrolyte Microenvironments to Optimize the Activity and Selectivity for the Electrochemical Reduction of CO
    Bui JC; Kim C; King AJ; Romiluyi O; Kusoglu A; Weber AZ; Bell AT
    Acc Chem Res; 2022 Feb; 55(4):484-494. PubMed ID: 35104114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced CO
    Chen C; Sun X; Yang D; Lu L; Wu H; Zheng L; An P; Zhang J; Han B
    Chem Sci; 2019 Feb; 10(6):1659-1663. PubMed ID: 30842829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The spatial distribution of cobalt phthalocyanine and copper nanocubes controls the selectivity towards C
    Wang M; Loiudice A; Okatenko V; Sharp ID; Buonsanti R
    Chem Sci; 2023 Feb; 14(5):1097-1104. PubMed ID: 36756336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalyst Aggregation Matters for Immobilized Molecular CO
    Ren S; Lees EW; Hunt C; Jewlal A; Kim Y; Zhang Z; Mowbray BAW; Fink AG; Melo L; Grant ER; Berlinguette CP
    J Am Chem Soc; 2023 Mar; 145(8):4414-4420. PubMed ID: 36799452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Scanning Tunneling Microscopy of Cobalt-Phthalocyanine-Catalyzed CO
    Wang X; Cai ZF; Wang YQ; Feng YC; Yan HJ; Wang D; Wan LJ
    Angew Chem Int Ed Engl; 2020 Sep; 59(37):16098-16103. PubMed ID: 32495960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient multicarbon formation in acidic CO
    Chen Y; Li XY; Chen Z; Ozden A; Huang JE; Ou P; Dong J; Zhang J; Tian C; Lee BH; Wang X; Liu S; Qu Q; Wang S; Xu Y; Miao RK; Zhao Y; Liu Y; Qiu C; Abed J; Liu H; Shin H; Wang D; Li Y; Sinton D; Sargent EH
    Nat Nanotechnol; 2024 Mar; 19(3):311-318. PubMed ID: 37996517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailored Local Electronic Environment of Co-N
    Huang M; Chen B; Zhang H; Jin Y; Zhi Q; Yang T; Wang K; Jiang J
    Small Methods; 2024 Apr; ():e2301652. PubMed ID: 38659342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.