BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 38666541)

  • 21. Overexpression of ZNF169 promotes the growth and proliferation of colorectal cancer cells via the upregulation of ANKZF1.
    Zhang J; Wang Y; Hou S; Chi X; Ding D; Xue M; Zhang M; Wang J; Shuai J; Sun H; Gao Q; Kang C
    Oncol Rep; 2024 Jun; 51(6):. PubMed ID: 38666541
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long non-coding RNA FOXP4-AS1 is an unfavourable prognostic factor and regulates proliferation and apoptosis in colorectal cancer.
    Li J; Lian Y; Yan C; Cai Z; Ding J; Ma Z; Peng P; Wang K
    Cell Prolif; 2017 Feb; 50(1):. PubMed ID: 27790757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Long Non-Coding RNA SH3PXD2A-AS1 Promotes Cell Progression Partly Through Epigenetic Silencing P57 and KLF2 in Colorectal Cancer.
    Ma Z; Peng P; Zhou J; Hui B; Ji H; Wang J; Wang K
    Cell Physiol Biochem; 2018; 46(6):2197-2214. PubMed ID: 29734178
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lentivirus-mediated short hairpin RNA interference of CENPK inhibits growth of colorectal cancer cells with overexpression of Cullin 4A.
    Li X; Han YR; Xuefeng X; Ma YX; Xing GS; Yang ZW; Zhang Z; Shi L; Wu XL
    World J Gastroenterol; 2022 Oct; 28(37):5420-5443. PubMed ID: 36312839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. LncRNA DLEU1 contributes to colorectal cancer progression via activation of KPNA3.
    Liu T; Han Z; Li H; Zhu Y; Sun Z; Zhu A
    Mol Cancer; 2018 Aug; 17(1):118. PubMed ID: 30098595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CircTADA2A suppresses the progression of colorectal cancer via miR-374a-3p/KLF14 axis.
    Li Z; Yao H; Wang S; Li G; Gu X
    J Exp Clin Cancer Res; 2020 Aug; 39(1):160. PubMed ID: 32799891
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of Hypoxia-Associated Signature in Colon Cancer to Assess Tumor Immune Microenvironment and Predict Prognosis Based on 14 Hypoxia-Associated Genes.
    Chen P; Li Z; Liang Y; Wei M; Jiang H; Chen S; Zhao Z
    Int J Gen Med; 2023; 16():2503-2518. PubMed ID: 37346810
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The expression changes of transcription factors including ANKZF1, LEF1, CASZ1, and ATOH1 as a predictor of survival rate in colorectal cancer: a large-scale analysis.
    Sajadi M; Fazilti M; Nazem H; Mahdevar M; Ghaedi K
    Cancer Cell Int; 2022 Nov; 22(1):339. PubMed ID: 36344988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reprogrammed Lipid Metabolism and the Lipid-Associated Hallmarks of Colorectal Cancer.
    Salita T; Rustam YH; Mouradov D; Sieber OM; Reid GE
    Cancers (Basel); 2022 Jul; 14(15):. PubMed ID: 35954376
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteomics of post-translational modifications in colorectal cancer: Discovery of new biomarkers.
    Zhu G; Jin L; Sun W; Wang S; Liu N
    Biochim Biophys Acta Rev Cancer; 2022 Jul; 1877(4):188735. PubMed ID: 35577141
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A multi-omics machine learning framework in predicting the survival of colorectal cancer patients.
    Yang M; Yang H; Ji L; Hu X; Tian G; Wang B; Yang J
    Comput Biol Med; 2022 Jul; 146():105516. PubMed ID: 35468406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diagnostic and therapeutic biomarkers in colorectal cancer: a review.
    de Assis JV; Coutinho LA; Oyeyemi IT; Oyeyemi OT; Grenfell RFEQ
    Am J Cancer Res; 2022; 12(2):661-680. PubMed ID: 35261794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multi-Omic Approaches in Colorectal Cancer beyond Genomic Data.
    Sardo E; Napolitano S; Della Corte CM; Ciardiello D; Raucci A; Arrichiello G; Troiani T; Ciardiello F; Martinelli E; Martini G
    J Pers Med; 2022 Jan; 12(2):. PubMed ID: 35207616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zinc finger protein 277 is an intestinal transit-amplifying cell marker and colon cancer oncogene.
    Xie G; Peng Z; Liang J; Larabee SM; Drachenberg CB; Yfantis H; Raufman JP
    JCI Insight; 2022 Feb; 7(4):. PubMed ID: 35015732
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma.
    Li X; Han M; Zhang H; Liu F; Pan Y; Zhu J; Liao Z; Chen X; Zhang B
    Biomark Res; 2022 Jan; 10(1):2. PubMed ID: 35000617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Colorectal cancer subtyping.
    Ashktorab H; Brim H
    Nat Rev Cancer; 2022 Feb; 22(2):68-69. PubMed ID: 34880443
    [No Abstract]   [Full Text] [Related]  

  • 37. Zinc Finger Proteins in Neuro-Related Diseases Progression.
    Bu S; Lv Y; Liu Y; Qiao S; Wang H
    Front Neurosci; 2021; 15():760567. PubMed ID: 34867169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Screening and prevention of colorectal cancer.
    Kanth P; Inadomi JM
    BMJ; 2021 Sep; 374():n1855. PubMed ID: 34526356
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the regulation of β-catenin expression and activity in colorectal cancer carcinogenesis: beyond destruction complex.
    Taank Y; Agnihotri N
    Clin Transl Oncol; 2021 Dec; 23(12):2448-2459. PubMed ID: 34426910
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of zinc finger protein 367 exerts a tumor suppressive role in colorectal cancer by affecting the activation of oncogenic YAP1 signaling.
    Lei T; Gao Y; Duan Y; Cui C; Zhang L; Si M
    Environ Toxicol; 2021 Nov; 36(11):2278-2290. PubMed ID: 34351699
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.