BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38666574)

  • 1. Prediction of the univariant two-phase coexistence line of the tetrahydrofuran hydrate from computer simulation.
    Algaba J; Romero-Guzmán C; Torrejón MJ; Blas FJ
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38666574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the three-phase coexistence line in methane hydrates using computer simulations.
    Conde MM; Vega C
    J Chem Phys; 2010 Aug; 133(6):064507. PubMed ID: 20707575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The performance of OPC water model in prediction of the phase equilibria of methane hydrate.
    Hao X; Li C; Liu C; Meng Q; Sun J
    J Chem Phys; 2022 Jul; 157(1):014504. PubMed ID: 35803825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system.
    Michalis VK; Tsimpanogiannis IN; Stubos AK; Economou IG
    Phys Chem Chem Phys; 2016 Sep; 18(34):23538-48. PubMed ID: 27507133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation of CO2 hydrates: Prediction of three phase coexistence line.
    Míguez JM; Conde MM; Torré JP; Blas FJ; Piñeiro MM; Vega C
    J Chem Phys; 2015 Mar; 142(12):124505. PubMed ID: 25833594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation line and driving force for nucleation of the nitrogen hydrate from computer simulation.
    Algaba J; Torrejón MJ; Blas FJ
    J Chem Phys; 2023 Dec; 159(22):. PubMed ID: 38088432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-phase equilibria of hydrates from computer simulation. III. Effect of dispersive interactions in the methane and carbon dioxide hydrates.
    Algaba J; Blazquez S; Míguez JM; Conde MM; Blas FJ
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38686999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation.
    Garrido JM; Algaba J; Míguez JM; Mendiboure B; Moreno-Ventas Bravo AI; Piñeiro MM; Blas FJ
    J Chem Phys; 2016 Apr; 144(14):144702. PubMed ID: 27083740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solubility of carbon dioxide in water: Some useful results for hydrate nucleation.
    Algaba J; Zerón IM; Míguez JM; Grabowska J; Blazquez S; Sanz E; Vega C; Blas FJ
    J Chem Phys; 2023 May; 158(18):. PubMed ID: 37158326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates.
    Costandy J; Michalis VK; Tsimpanogiannis IN; Stubos AK; Economou IG
    J Chem Phys; 2015 Sep; 143(9):094506. PubMed ID: 26342376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Theoretical Study of the Hydration of Methane, from the Aqueous Solution to the sI Hydrate-Liquid Water-Gas Coexistence.
    Luis DP; García-González A; Saint-Martin H
    Int J Mol Sci; 2016 May; 17(6):. PubMed ID: 27240339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulation of the Three-Phase Equilibrium Line of CO
    Hao X; Li C; Meng Q; Sun J; Huang L; Bu Q; Li C
    ACS Omega; 2023 Oct; 8(42):39847-39854. PubMed ID: 37901483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-phase equilibria of hydrates from computer simulation. II. Finite-size effects in the carbon dioxide hydrate.
    Algaba J; Blazquez S; Feria E; Míguez JM; Conde MM; Blas FJ
    J Chem Phys; 2024 Apr; 160(16):. PubMed ID: 38687000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Does Confinement Enable Methane Hydrate Growth at Low Pressures? Insights from Molecular Dynamics Simulations.
    Yu KB; Yazaydin AO
    J Phys Chem C Nanomater Interfaces; 2020 May; 124(20):11015-11022. PubMed ID: 32582402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular insights into the heterogeneous crystal growth of tetrahydrofuran hydrate: Kinetic and interfacial properties.
    Ebrahimian F; Peyvandi K; Varaminian F
    J Mol Graph Model; 2022 Sep; 115():108205. PubMed ID: 35550971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology.
    Michalis VK; Costandy J; Tsimpanogiannis IN; Stubos AK; Economou IG
    J Chem Phys; 2015 Jan; 142(4):044501. PubMed ID: 25637989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Small Cage Guests on Dissociation Properties of Tetrahydrofuran Hydrates.
    Chang KY; Chu CK; Chu LS; Chen YA; Lin ST; Chen YP; Chen LJ
    J Phys Chem B; 2020 Aug; 124(33):7217-7228. PubMed ID: 32786717
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental and computational investigation of the sII binary He-THF hydrate.
    Papadimitriou NI; Tsimpanogiannis IN; Stubos AK; Martín A; Rovetto LJ; Florusse LJ; Peters CJ
    J Phys Chem B; 2011 Feb; 115(6):1411-5. PubMed ID: 21254758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of liquid water-hydrate-methane vapor phase equilibria from molecular simulations.
    Jensen L; Thomsen K; von Solms N; Wierzchowski S; Walsh MR; Koh CA; Sloan ED; Wu DT; Sum AK
    J Phys Chem B; 2010 May; 114(17):5775-82. PubMed ID: 20392117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vapour-liquid phase equilibria and interfacial properties of fatty acid methyl esters from molecular dynamics simulations.
    Feria E; Algaba J; Míguez JM; Mejía A; Gómez-Álvarez P; Blas FJ
    Phys Chem Chem Phys; 2020 Mar; 22(9):4974-4983. PubMed ID: 32083261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.